developer_uid: Jellywibble
submission_id: mistralai-mistral-nemo-_9330_v24
model_name: nemo-pyg-baseline
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2024-07-29T23:09:18+00:00
num_battles: 12285
num_wins: 5426
celo_rating: 1144.39
family_friendly_score: 0.0
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
reward_repo: ChaiML/gpt2_xl_pairwise_89m_step_347634
model_num_parameters: 12772070400.0
best_of: 1
max_input_tokens: 512
max_output_tokens: 64
display_name: nemo-pyg-baseline
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
us_pacific_date: 2024-07-29
win_ratio: 0.4416768416768417
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.05, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '####', '###'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 64, 'reward_max_token_input': 256}
formatter: {'memory_template': '### Instruction:\n{memory}\n', 'prompt_template': '### Input:\n{prompt}\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '### Response:\n{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v24-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v24-mkmlizer to finish
mistralai-mistral-nemo-9330-v24-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ Version: 0.9.7 ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v24-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v23-mkmlizer: quantized model in 37.016s
mistralai-mistral-nemo-9330-v23-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 84.400s
mistralai-mistral-nemo-9330-v23-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v23-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v23-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v23
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v23/config.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v23/special_tokens_map.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v23/tokenizer_config.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v23/tokenizer.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v23/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v23-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
mistralai-mistral-nemo-9330-v23-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:10, 33.47it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 53.71it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 44.95it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 42.36it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 48.85it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 45.48it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 43.48it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:06, 47.66it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:06, 45.25it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:06, 48.66it/s] Loading 0: 18%|█▊ | 64/363 [00:01<00:10, 28.60it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 37.12it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 37.79it/s] Loading 0: 23%|██▎ | 83/363 [00:02<00:07, 38.00it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 41.81it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 42.50it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 43.03it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 44.59it/s] Loading 0: 30%|███ | 109/363 [00:02<00:05, 45.58it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:06, 39.30it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:06, 39.52it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 43.48it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 43.19it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 43.54it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 44.27it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:07, 27.55it/s] Loading 0: 41%|████ | 149/363 [00:03<00:07, 27.99it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 35.48it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 37.35it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 38.87it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:05, 38.03it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 38.40it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 42.93it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 43.30it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 42.80it/s] Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 41.10it/s] Loading 0: 56%|█████▌ | 204/363 [00:05<00:03, 40.87it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 45.58it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 44.31it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 44.05it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:05, 27.53it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 30.06it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 37.75it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 39.63it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 40.73it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 40.20it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 40.09it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 44.69it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 44.55it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 44.19it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:01, 44.78it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 37.79it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 44.72it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 44.96it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 45.84it/s] Loading 0: 84%|████████▍ | 306/363 [00:14<00:23, 2.39it/s] Loading 0: 85%|████████▌ | 310/363 [00:14<00:17, 3.09it/s] Loading 0: 87%|████████▋ | 314/363 [00:14<00:12, 4.06it/s] Loading 0: 88%|████████▊ | 319/363 [00:14<00:07, 5.73it/s] Loading 0: 89%|████████▉ | 323/363 [00:14<00:05, 7.39it/s] Loading 0: 91%|█████████ | 329/363 [00:15<00:03, 10.71it/s] Loading 0: 92%|█████████▏| 334/363 [00:15<00:02, 14.02it/s] Loading 0: 93%|█████████▎| 339/363 [00:15<00:01, 16.23it/s] Loading 0: 95%|█████████▌| 346/363 [00:15<00:00, 22.64it/s] Loading 0: 97%|█████████▋| 351/363 [00:15<00:00, 26.00it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 28.78it/s] Loading 0: 99%|█████████▉| 361/363 [00:15<00:00, 32.63it/s] /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v23-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v23-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v23-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v23-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v23-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v24-mkmlizer: Downloaded to shared memory in 55.273s
mistralai-mistral-nemo-9330-v24-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpnf1ciebg, device:0
mistralai-mistral-nemo-9330-v24-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v23-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:05<00:05, 6.00s/it] Downloading shards: 100%|██████████| 2/2 [00:12<00:00, 6.31s/it] Downloading shards: 100%|██████████| 2/2 [00:12<00:00, 6.26s/it]
mistralai-mistral-nemo-9330-v23-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.16it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.59it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.26it/s]
mistralai-mistral-nemo-9330-v23-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mistral-nemo-9330-v23-mkmlizer: Saving duration: 1.322s
mistralai-mistral-nemo-9330-v23-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 19.133s
mistralai-mistral-nemo-9330-v23-mkmlizer: creating bucket guanaco-reward-models
mistralai-mistral-nemo-9330-v23-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mistral-nemo-9330-v23-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/config.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/special_tokens_map.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/tokenizer_config.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/merges.txt
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/vocab.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/tokenizer.json
mistralai-mistral-nemo-9330-v23-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v23_reward/reward.tensors
Failed to get response for submission blend_migub_2024-07-27: ('http://undi95-meta-llama-3-70b-6209-v18-predictor.tenant-chaiml-guanaco.k.chaiverse.com/v1/models/GPT-J-6B-lit-v2:predict', 'read tcp 127.0.0.1:42004->127.0.0.1:8080: read: connection reset by peer\n')
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Job mistralai-mistral-nemo-9330-v23-mkmlizer completed after 149.14s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v23-mkmlizer
Pipeline stage MKMLizer completed in 150.15s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.12s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mistral-nemo-9330-v23
Waiting for inference service mistralai-mistral-nemo-9330-v23 to be ready
mistralai-mistral-nemo-9330-v24-mkmlizer: quantized model in 36.234s
mistralai-mistral-nemo-9330-v24-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 91.508s
mistralai-mistral-nemo-9330-v24-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v24-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v24-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v24
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v24/config.json
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v24/special_tokens_map.json
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v24/tokenizer_config.json
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v24/tokenizer.json
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v24/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v24-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
mistralai-mistral-nemo-9330-v24-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 32.34it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.97it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 47.82it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 44.23it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 49.72it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 46.20it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 45.11it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 50.71it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 48.11it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 36.18it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 36.70it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.90it/s] Loading 0: 21%|██ | 77/363 [00:01<00:06, 42.94it/s] Loading 0: 23%|██▎ | 82/363 [00:01<00:07, 36.23it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 43.86it/s] Loading 0: 26%|██▌ | 95/363 [00:02<00:05, 45.29it/s] Loading 0: 28%|██▊ | 100/363 [00:02<00:06, 38.74it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:05, 43.50it/s] Loading 0: 31%|███ | 112/363 [00:02<00:05, 47.37it/s] Loading 0: 33%|███▎ | 118/363 [00:02<00:06, 38.21it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 44.92it/s] Loading 0: 36%|███▌ | 131/363 [00:03<00:05, 45.48it/s] Loading 0: 37%|███▋ | 136/363 [00:03<00:06, 37.76it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 32.72it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 33.37it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 31.48it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 37.49it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 39.46it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 40.86it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 41.05it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 40.60it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:03, 45.35it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:03, 45.36it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 45.66it/s] Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 43.08it/s] Loading 0: 56%|█████▌ | 204/363 [00:04<00:03, 40.86it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 44.42it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 42.84it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 42.24it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:05, 26.01it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 28.16it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 35.42it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 37.04it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 38.78it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 40.84it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 35.11it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 42.57it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 42.39it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 43.47it/s] Loading 0: 77%|███████▋ | 280/363 [00:06<00:01, 42.25it/s] Loading 0: 79%|███████▊ | 285/363 [00:07<00:01, 41.02it/s] Loading 0: 80%|████████ | 292/363 [00:07<00:01, 45.71it/s] Loading 0: 82%|████████▏ | 298/363 [00:07<00:01, 43.83it/s] Loading 0: 84%|████████▎ | 304/363 [00:14<00:21, 2.78it/s] Loading 0: 85%|████████▍ | 308/363 [00:14<00:15, 3.50it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:11, 4.47it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:05, 7.26it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:03, 9.69it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:02, 12.09it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 16.77it/s] Loading 0: 95%|█████████▍| 344/363 [00:15<00:00, 20.48it/s] Loading 0: 96%|█████████▌| 349/363 [00:15<00:00, 23.58it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 30.18it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 32.76it/s] /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v24-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v24-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v24-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v24-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v24-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v24-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:05<00:05, 5.84s/it] Downloading shards: 100%|██████████| 2/2 [00:09<00:00, 4.27s/it] Downloading shards: 100%|██████████| 2/2 [00:09<00:00, 4.51s/it]
mistralai-mistral-nemo-9330-v24-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.34it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.89it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.54it/s]
mistralai-mistral-nemo-9330-v24-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mistral-nemo-9330-v24-mkmlizer: Saving duration: 1.343s
mistralai-mistral-nemo-9330-v24-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 13.690s
mistralai-mistral-nemo-9330-v24-mkmlizer: creating bucket guanaco-reward-models
mistralai-mistral-nemo-9330-v24-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mistral-nemo-9330-v24-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v24_reward
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v24_reward/vocab.json
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v24_reward/tokenizer.json
mistralai-mistral-nemo-9330-v24-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v24_reward/reward.tensors
Job mistralai-mistral-nemo-9330-v24-mkmlizer completed after 138.02s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v24-mkmlizer
Pipeline stage MKMLizer completed in 138.60s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.15s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mistral-nemo-9330-v24
Waiting for inference service mistralai-mistral-nemo-9330-v24 to be ready
Inference service mistralai-mistral-nemo-9330-v23 ready after 100.9919695854187s
Pipeline stage ISVCDeployer completed in 102.71s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.291508197784424s
Received healthy response to inference request in 1.4214966297149658s
Received healthy response to inference request in 1.4205224514007568s
Received healthy response to inference request in 1.0609724521636963s
Received healthy response to inference request in 1.0699918270111084s
5 requests
0 failed requests
5th percentile: 1.0627763271331787
10th percentile: 1.0645802021026611
20th percentile: 1.068187952041626
30th percentile: 1.1400979518890382
40th percentile: 1.2803102016448975
50th percentile: 1.4205224514007568
60th percentile: 1.4209121227264405
70th percentile: 1.421301794052124
80th percentile: 1.5954989433288576
90th percentile: 1.9435035705566408
95th percentile: 2.117505884170532
99th percentile: 2.2567077350616453
mean time: 1.4528983116149903
Pipeline stage StressChecker completed in 9.53s
mistralai-mistral-nemo-_9330_v23 status is now deployed due to DeploymentManager action
Inference service mistralai-mistral-nemo-9330-v24 ready after 110.87360858917236s
Pipeline stage ISVCDeployer completed in 111.82s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.402390480041504s
Received healthy response to inference request in 0.9472615718841553s
Received healthy response to inference request in 0.7736434936523438s
Received healthy response to inference request in 1.401298999786377s
Received healthy response to inference request in 1.415238618850708s
5 requests
0 failed requests
5th percentile: 0.808367109298706
10th percentile: 0.8430907249450683
20th percentile: 0.912537956237793
30th percentile: 1.0380690574645997
40th percentile: 1.2196840286254884
50th percentile: 1.401298999786377
60th percentile: 1.4068748474121093
70th percentile: 1.4124506950378417
80th percentile: 1.6126689910888674
90th percentile: 2.0075297355651855
95th percentile: 2.2049601078033447
99th percentile: 2.362904405593872
mean time: 1.3879666328430176
Pipeline stage StressChecker completed in 7.90s
mistralai-mistral-nemo-_9330_v24 status is now deployed due to DeploymentManager action
mistralai-mistral-nemo-_9330_v24 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of mistralai-mistral-nemo-_9330_v24
Running pipeline stage ISVCDeleter
Checking if service mistralai-mistral-nemo-9330-v24 is running
Tearing down inference service mistralai-mistral-nemo-9330-v24
Service mistralai-mistral-nemo-9330-v24 has been torndown
Pipeline stage ISVCDeleter completed in 4.71s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v24/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v24/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v24/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v24/tokenizer.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v24/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v24_reward/config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v24_reward/merges.txt from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v24_reward/reward.tensors from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v24_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v24_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v24_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v24_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 6.78s
mistralai-mistral-nemo-_9330_v24 status is now torndown due to DeploymentManager action