developer_uid: Jellywibble
submission_id: mistralai-mistral-nemo-_9330_v22
model_name: mistralai-mistral-nemo-chaiml
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2024-07-29T23:07:37+00:00
num_battles: 12640
num_wins: 5259
celo_rating: 1127.91
family_friendly_score: 0.0
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
reward_repo: ChaiML/gpt2_xl_pairwise_89m_step_347634
model_num_parameters: 12772070400.0
best_of: 1
max_input_tokens: 512
max_output_tokens: 64
display_name: mistralai-mistral-nemo-chaiml
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
us_pacific_date: 2024-07-29
win_ratio: 0.4160601265822785
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.05, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '<eot_id>', '<|im_end|>'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 64, 'reward_max_token_input': 256}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v22-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v22-mkmlizer to finish
mistralai-mistral-nemo-9330-v22-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ Version: 0.9.7 ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v22-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v22-mkmlizer: Downloaded to shared memory in 53.708s
mistralai-mistral-nemo-9330-v22-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmppwy9t1z4, device:0
mistralai-mistral-nemo-9330-v22-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v22-mkmlizer: quantized model in 36.780s
mistralai-mistral-nemo-9330-v22-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 90.488s
mistralai-mistral-nemo-9330-v22-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v22-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v22-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v22
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v22/config.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v22/special_tokens_map.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v22/tokenizer_config.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v22/tokenizer.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v22/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v22-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
mistralai-mistral-nemo-9330-v22-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:10, 35.18it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 56.78it/s] Loading 0: 6%|▌ | 20/363 [00:00<00:06, 53.97it/s] Loading 0: 7%|▋ | 26/363 [00:00<00:06, 52.17it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:07, 44.30it/s] Loading 0: 11%|█ | 40/363 [00:00<00:06, 52.66it/s] Loading 0: 13%|█▎ | 46/363 [00:00<00:06, 49.47it/s] Loading 0: 14%|█▍ | 52/363 [00:01<00:06, 49.87it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:05, 50.56it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 36.21it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.20it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 39.97it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:07, 39.60it/s] Loading 0: 25%|██▍ | 89/363 [00:01<00:06, 43.45it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 43.37it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 43.16it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 43.49it/s] Loading 0: 30%|███ | 109/363 [00:02<00:05, 44.11it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:06, 36.23it/s] Loading 0: 33%|███▎ | 118/363 [00:02<00:07, 33.96it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 40.24it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 40.08it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 39.53it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 40.76it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 25.41it/s] Loading 0: 41%|████ | 149/363 [00:03<00:08, 26.07it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:06, 33.14it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:06, 32.95it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 35.40it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 34.91it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:05, 37.21it/s] Loading 0: 49%|████▉ | 178/363 [00:04<00:05, 36.21it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 37.91it/s] Loading 0: 52%|█████▏ | 187/363 [00:04<00:04, 36.65it/s] Loading 0: 53%|█████▎ | 192/363 [00:04<00:04, 38.33it/s] Loading 0: 54%|█████▍ | 196/363 [00:04<00:04, 37.07it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 38.66it/s] Loading 0: 56%|█████▋ | 205/363 [00:05<00:04, 37.16it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 40.33it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 41.81it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:03, 46.44it/s] Loading 0: 62%|██████▏ | 226/363 [00:05<00:04, 28.87it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 29.80it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 37.66it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 39.62it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 41.56it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 41.32it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 39.96it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 44.38it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 44.51it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:01, 44.89it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 45.89it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 37.26it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 43.84it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 41.42it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 41.97it/s] Loading 0: 84%|████████▍ | 306/363 [00:14<00:23, 2.46it/s] Loading 0: 85%|████████▌ | 310/363 [00:14<00:16, 3.19it/s] Loading 0: 87%|████████▋ | 314/363 [00:14<00:11, 4.18it/s] Loading 0: 88%|████████▊ | 319/363 [00:14<00:07, 5.90it/s] Loading 0: 89%|████████▉ | 323/363 [00:14<00:05, 7.58it/s] Loading 0: 90%|█████████ | 328/363 [00:14<00:03, 10.32it/s] Loading 0: 91%|█████████▏| 332/363 [00:15<00:02, 12.74it/s] Loading 0: 93%|█████████▎| 337/363 [00:15<00:01, 16.77it/s] Loading 0: 94%|█████████▍| 342/363 [00:15<00:01, 20.74it/s] Loading 0: 96%|█████████▌| 347/363 [00:15<00:00, 24.69it/s] Loading 0: 97%|█████████▋| 352/363 [00:15<00:00, 29.15it/s] Loading 0: 98%|█████████▊| 357/363 [00:15<00:00, 28.08it/s] /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v22-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v22-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v22-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v22-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v22-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v22-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:05<00:05, 5.93s/it] Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 4.23s/it] Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 4.48s/it]
mistralai-mistral-nemo-9330-v22-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.27it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.79it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.44it/s]
mistralai-mistral-nemo-9330-v22-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mistral-nemo-9330-v22-mkmlizer: Saving duration: 1.386s
mistralai-mistral-nemo-9330-v22-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 14.125s
mistralai-mistral-nemo-9330-v22-mkmlizer: creating bucket guanaco-reward-models
mistralai-mistral-nemo-9330-v22-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mistral-nemo-9330-v22-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/config.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/special_tokens_map.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/tokenizer_config.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/merges.txt
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/vocab.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/tokenizer.json
mistralai-mistral-nemo-9330-v22-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v22_reward/reward.tensors
Job mistralai-mistral-nemo-9330-v22-mkmlizer completed after 137.03s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v22-mkmlizer
Pipeline stage MKMLizer completed in 137.95s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.11s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mistral-nemo-9330-v22
Waiting for inference service mistralai-mistral-nemo-9330-v22 to be ready
Inference service mistralai-mistral-nemo-9330-v22 ready after 121.18080568313599s
Pipeline stage ISVCDeployer completed in 122.73s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.6766576766967773s
Received healthy response to inference request in 0.9306440353393555s
Received healthy response to inference request in 1.4205865859985352s
Received healthy response to inference request in 1.3942151069641113s
Received healthy response to inference request in 0.7945165634155273s
5 requests
0 failed requests
5th percentile: 0.821742057800293
10th percentile: 0.8489675521850586
20th percentile: 0.9034185409545898
30th percentile: 1.0233582496643066
40th percentile: 1.208786678314209
50th percentile: 1.3942151069641113
60th percentile: 1.4047636985778809
70th percentile: 1.4153122901916504
80th percentile: 1.4718008041381836
90th percentile: 1.5742292404174805
95th percentile: 1.625443458557129
99th percentile: 1.6664148330688477
mean time: 1.2433239936828613
Pipeline stage StressChecker completed in 6.93s
mistralai-mistral-nemo-_9330_v22 status is now deployed due to DeploymentManager action
mistralai-mistral-nemo-_9330_v22 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of mistralai-mistral-nemo-_9330_v22
Running pipeline stage ISVCDeleter
Checking if service mistralai-mistral-nemo-9330-v22 is running
Tearing down inference service mistralai-mistral-nemo-9330-v22
Service mistralai-mistral-nemo-9330-v22 has been torndown
Pipeline stage ISVCDeleter completed in 4.96s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v22/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v22/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v22/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v22/tokenizer.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v22/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v22_reward/config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v22_reward/merges.txt from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v22_reward/reward.tensors from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v22_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v22_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v22_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v22_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 6.21s
mistralai-mistral-nemo-_9330_v22 status is now torndown due to DeploymentManager action