developer_uid: zmeeks
submission_id: mistralai-mistral-nem_93303_v516
model_name: nemo-125-095_k15
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2025-06-29T21:47:29+00:00
num_battles: 7488
num_wins: 3716
celo_rating: 1243.14
family_friendly_score: 0.5880000000000001
family_friendly_standard_error: 0.00696068962100739
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.604840477935627, 'latency_mean': 1.6531448090076446, 'latency_p50': 1.6540580987930298, 'latency_p90': 1.8162481307983398}, {'batch_size': 3, 'throughput': 1.0823460770088642, 'latency_mean': 2.769186073541641, 'latency_p50': 2.763511300086975, 'latency_p90': 3.039917540550232}, {'batch_size': 5, 'throughput': 1.3089317292906197, 'latency_mean': 3.8037140381336214, 'latency_p50': 3.7795082330703735, 'latency_p90': 4.274101829528808}, {'batch_size': 6, 'throughput': 1.3588340636240082, 'latency_mean': 4.389833031892777, 'latency_p50': 4.4006863832473755, 'latency_p90': 4.901346731185913}, {'batch_size': 8, 'throughput': 1.4344126578063598, 'latency_mean': 5.542663987874985, 'latency_p50': 5.500032544136047, 'latency_p90': 6.263511443138122}, {'batch_size': 10, 'throughput': 1.4634270740002933, 'latency_mean': 6.778478280305863, 'latency_p50': 6.794451951980591, 'latency_p90': 7.613962149620056}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: nemo-125-095_k15
is_internal_developer: False
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.3
us_pacific_date: 2025-06-29
win_ratio: 0.4962606837606838
generation_params: {'temperature': 1.25, 'top_p': 0.95, 'min_p': 0.0, 'top_k': 15, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nem-93303-v516-mkmlizer
Waiting for job on mistralai-mistral-nem-93303-v516-mkmlizer to finish
mistralai-mistral-nem-93303-v516-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ Version: 0.29.3 ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ belonging to: ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
mistralai-mistral-nem-93303-v516-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v516-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nem-93303-v516-mkmlizer: Downloaded to shared memory in 77.974s
mistralai-mistral-nem-93303-v516-mkmlizer: Checking if mistralai/Mistral-Nemo-Instruct-2407 already exists in ChaiML
mistralai-mistral-nem-93303-v516-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp0zaj76bs, device:0
mistralai-mistral-nem-93303-v516-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nem-93303-v516-mkmlizer: quantized model in 49.650s
mistralai-mistral-nem-93303-v516-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 127.711s
mistralai-mistral-nem-93303-v516-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nem-93303-v516-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nem-93303-v516-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v516
mistralai-mistral-nem-93303-v516-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v516/config.json
mistralai-mistral-nem-93303-v516-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v516/special_tokens_map.json
mistralai-mistral-nem-93303-v516-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v516/tokenizer_config.json
mistralai-mistral-nem-93303-v516-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v516/tokenizer.json
mistralai-mistral-nem-93303-v516-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v516/flywheel_model.0.safetensors
mistralai-mistral-nem-93303-v516-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:17, 20.49it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:11, 30.73it/s] Loading 0: 4%|▍ | 14/363 [00:00<00:13, 26.79it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:10, 32.83it/s] Loading 0: 6%|▋ | 23/363 [00:00<00:12, 27.65it/s] Loading 0: 8%|▊ | 28/363 [00:00<00:10, 31.98it/s] Loading 0: 9%|▉ | 32/363 [00:01<00:11, 27.60it/s] Loading 0: 10%|█ | 37/363 [00:01<00:10, 32.34it/s] Loading 0: 11%|█▏ | 41/363 [00:01<00:11, 28.06it/s] Loading 0: 13%|█▎ | 46/363 [00:01<00:09, 32.80it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:10, 29.37it/s] Loading 0: 15%|█▌ | 56/363 [00:01<00:08, 34.34it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:08, 35.05it/s] Loading 0: 18%|█▊ | 64/363 [00:02<00:14, 20.58it/s] Loading 0: 19%|█▉ | 69/363 [00:02<00:11, 25.23it/s] Loading 0: 20%|██ | 73/363 [00:02<00:11, 24.60it/s] Loading 0: 21%|██▏ | 78/363 [00:02<00:10, 28.30it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:11, 24.84it/s] Loading 0: 24%|██▍ | 87/363 [00:03<00:10, 26.88it/s] Loading 0: 25%|██▌ | 91/363 [00:03<00:11, 23.85it/s] Loading 0: 26%|██▋ | 96/363 [00:03<00:09, 27.26it/s] Loading 0: 28%|██▊ | 100/363 [00:03<00:11, 22.22it/s] Loading 0: 29%|██▉ | 105/363 [00:03<00:10, 25.39it/s] Loading 0: 30%|███ | 110/363 [00:04<00:09, 25.56it/s] Loading 0: 31%|███ | 113/363 [00:04<00:11, 21.59it/s] Loading 0: 33%|███▎ | 118/363 [00:04<00:12, 19.98it/s] Loading 0: 34%|███▍ | 123/363 [00:04<00:10, 21.99it/s] Loading 0: 35%|███▍ | 127/363 [00:04<00:11, 20.48it/s] Loading 0: 36%|███▋ | 132/363 [00:05<00:09, 23.85it/s] Loading 0: 37%|███▋ | 136/363 [00:05<00:10, 21.70it/s] Loading 0: 39%|███▉ | 141/363 [00:05<00:08, 25.71it/s] Loading 0: 40%|███▉ | 144/363 [00:05<00:12, 16.88it/s] Loading 0: 41%|████ | 149/363 [00:06<00:11, 19.20it/s] Loading 0: 42%|████▏ | 154/363 [00:06<00:09, 22.36it/s] Loading 0: 44%|████▎ | 158/363 [00:06<00:09, 22.59it/s] Loading 0: 45%|████▍ | 163/363 [00:06<00:07, 26.34it/s] Loading 0: 46%|████▌ | 167/363 [00:06<00:08, 24.19it/s] Loading 0: 47%|████▋ | 172/363 [00:06<00:06, 28.04it/s] Loading 0: 48%|████▊ | 176/363 [00:07<00:07, 23.96it/s] Loading 0: 50%|████▉ | 181/363 [00:07<00:06, 26.57it/s] Loading 0: 51%|█████ | 185/363 [00:07<00:07, 24.56it/s] Loading 0: 52%|█████▏ | 190/363 [00:07<00:06, 28.77it/s] Loading 0: 53%|█████▎ | 194/363 [00:07<00:06, 25.20it/s] Loading 0: 55%|█████▍ | 199/363 [00:07<00:05, 28.99it/s] Loading 0: 56%|█████▌ | 203/363 [00:08<00:05, 27.09it/s] Loading 0: 57%|█████▋ | 208/363 [00:08<00:05, 29.76it/s] Loading 0: 58%|█████▊ | 212/363 [00:08<00:05, 26.26it/s] Loading 0: 60%|█████▉ | 217/363 [00:08<00:05, 28.87it/s] Loading 0: 61%|██████ | 222/363 [00:08<00:04, 28.88it/s] Loading 0: 62%|██████▏ | 226/363 [00:09<00:07, 18.59it/s] Loading 0: 63%|██████▎ | 230/363 [00:09<00:07, 18.96it/s] Loading 0: 65%|██████▍ | 235/363 [00:09<00:05, 22.28it/s] Loading 0: 66%|██████▌ | 239/363 [00:09<00:05, 20.82it/s] Loading 0: 67%|██████▋ | 244/363 [00:09<00:04, 25.03it/s] Loading 0: 68%|██████▊ | 248/363 [00:09<00:04, 23.95it/s] Loading 0: 70%|██████▉ | 253/363 [00:10<00:03, 28.81it/s] Loading 0: 71%|███████ | 257/363 [00:10<00:04, 25.79it/s] Loading 0: 72%|███████▏ | 262/363 [00:10<00:03, 29.86it/s] Loading 0: 73%|███████▎ | 266/363 [00:10<00:03, 27.25it/s] Loading 0: 75%|███████▍ | 271/363 [00:10<00:03, 30.57it/s] Loading 0: 76%|███████▌ | 275/363 [00:10<00:03, 25.50it/s] Loading 0: 77%|███████▋ | 280/363 [00:11<00:02, 29.66it/s] Loading 0: 78%|███████▊ | 284/363 [00:11<00:03, 25.55it/s] Loading 0: 80%|███████▉ | 289/363 [00:11<00:02, 29.74it/s] Loading 0: 81%|████████ | 293/363 [00:11<00:02, 24.32it/s] Loading 0: 82%|████████▏ | 298/363 [00:11<00:02, 27.04it/s] Loading 0: 83%|████████▎ | 303/363 [00:11<00:02, 27.80it/s] Loading 0: 85%|████████▍ | 307/363 [00:12<00:04, 12.77it/s] Loading 0: 86%|████████▌ | 312/363 [00:12<00:03, 15.18it/s] Loading 0: 87%|████████▋ | 317/363 [00:12<00:02, 19.20it/s] Loading 0: 88%|████████▊ | 321/363 [00:13<00:02, 19.63it/s] Loading 0: 90%|████████▉ | 326/363 [00:13<00:01, 24.14it/s] Loading 0: 91%|█████████ | 330/363 [00:13<00:01, 21.97it/s] Loading 0: 92%|█████████▏| 335/363 [00:13<00:01, 26.02it/s] Loading 0: 93%|█████████▎| 339/363 [00:13<00:01, 23.33it/s] Loading 0: 95%|█████████▍| 344/363 [00:13<00:00, 26.66it/s] Loading 0: 96%|█████████▌| 348/363 [00:14<00:00, 25.07it/s] Loading 0: 97%|█████████▋| 353/363 [00:14<00:00, 29.32it/s] Loading 0: 98%|█████████▊| 357/363 [00:14<00:00, 24.49it/s] Loading 0: 100%|█████████▉| 362/363 [00:14<00:00, 28.65it/s]
Job mistralai-mistral-nem-93303-v516-mkmlizer completed after 166.52s with status: succeeded
Stopping job with name mistralai-mistral-nem-93303-v516-mkmlizer
Pipeline stage MKMLizer completed in 167.03s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nem-93303-v516
Waiting for inference service mistralai-mistral-nem-93303-v516 to be ready
Inference service mistralai-mistral-nem-93303-v516 ready after 200.94435954093933s
Pipeline stage MKMLDeployer completed in 201.38s
run pipeline stage %s
Running pipeline stage StressChecker
HTTPConnectionPool(host='guanaco-submitter.guanaco-backend.k2.chaiverse.com', port=80): Read timed out. (read timeout=20)
Received unhealthy response to inference request!
Received healthy response to inference request in 2.202500581741333s
Received healthy response to inference request in 1.7200078964233398s
Received healthy response to inference request in 1.5393292903900146s
Received healthy response to inference request in 0.6607053279876709s
5 requests
1 failed requests
5th percentile: 0.8364301204681397
10th percentile: 1.0121549129486085
20th percentile: 1.3636044979095459
30th percentile: 1.5754650115966797
40th percentile: 1.6477364540100097
50th percentile: 1.7200078964233398
60th percentile: 1.913004970550537
70th percentile: 2.106002044677734
80th percentile: 5.791075277328495
90th percentile: 12.96822466850281
95th percentile: 16.55679936408996
99th percentile: 19.427659120559692
mean time: 5.2535834312438965
%s, retrying in %s seconds...
Received healthy response to inference request in 1.4554798603057861s
Received healthy response to inference request in 1.8146650791168213s
Received healthy response to inference request in 1.5267937183380127s
Received healthy response to inference request in 1.5425033569335938s
Received healthy response to inference request in 1.7823686599731445s
5 requests
0 failed requests
5th percentile: 1.4697426319122315
10th percentile: 1.4840054035186767
20th percentile: 1.5125309467315673
30th percentile: 1.529935646057129
40th percentile: 1.5362195014953612
50th percentile: 1.5425033569335938
60th percentile: 1.638449478149414
70th percentile: 1.7343955993652342
80th percentile: 1.78882794380188
90th percentile: 1.8017465114593505
95th percentile: 1.808205795288086
99th percentile: 1.8133732223510741
mean time: 1.6243621349334716
Pipeline stage StressChecker completed in 37.34s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.76s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.67s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v516 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service mistralai-mistral-nem-93303-v516-profiler
Waiting for inference service mistralai-mistral-nem-93303-v516-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 4280.99s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v516 status is now inactive due to auto deactivation removed underperforming models
mistralai-mistral-nem_93303_v516 status is now torndown due to DeploymentManager action