developer_uid: zmeeks
submission_id: mistralai-mistral-nem_93303_v502
model_name: nemo-101001
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2025-06-28T10:34:25+00:00
num_battles: 7710
num_wins: 3522
celo_rating: 1244.53
family_friendly_score: 0.5936
family_friendly_standard_error: 0.006946064209320268
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5932920050766894, 'latency_mean': 1.6853336489200592, 'latency_p50': 1.6953264474868774, 'latency_p90': 1.8381623983383177}, {'batch_size': 3, 'throughput': 1.0820718352888918, 'latency_mean': 2.7639180409908293, 'latency_p50': 2.7688077688217163, 'latency_p90': 3.0642075300216676}, {'batch_size': 5, 'throughput': 1.2923827307801672, 'latency_mean': 3.8478916001319887, 'latency_p50': 3.8318363428115845, 'latency_p90': 4.351280236244202}, {'batch_size': 6, 'throughput': 1.3530245732567292, 'latency_mean': 4.4053292036056515, 'latency_p50': 4.413857936859131, 'latency_p90': 4.97499029636383}, {'batch_size': 8, 'throughput': 1.4175405704021606, 'latency_mean': 5.609645196199417, 'latency_p50': 5.637653470039368, 'latency_p90': 6.327586531639099}, {'batch_size': 10, 'throughput': 1.4400177417652187, 'latency_mean': 6.8760441410541535, 'latency_p50': 6.881426811218262, 'latency_p90': 7.7629602432250975}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: nemo-101001
is_internal_developer: False
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.28
us_pacific_date: 2025-06-28
win_ratio: 0.45680933852140077
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.1, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nem-93303-v502-mkmlizer
Waiting for job on mistralai-mistral-nem-93303-v502-mkmlizer to finish
mistralai-mistral-nem-93303-v502-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ Version: 0.29.3 ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ belonging to: ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
mistralai-mistral-nem-93303-v502-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v502-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nem-93303-v502-mkmlizer: Downloaded to shared memory in 47.149s
mistralai-mistral-nem-93303-v502-mkmlizer: Checking if mistralai/Mistral-Nemo-Instruct-2407 already exists in ChaiML
mistralai-mistral-nem-93303-v502-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmplpfez4ag, device:0
mistralai-mistral-nem-93303-v502-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nem-93303-v502-mkmlizer: quantized model in 29.762s
mistralai-mistral-nem-93303-v502-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 76.996s
mistralai-mistral-nem-93303-v502-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nem-93303-v502-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nem-93303-v502-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v502
mistralai-mistral-nem-93303-v502-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v502/config.json
mistralai-mistral-nem-93303-v502-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v502/special_tokens_map.json
mistralai-mistral-nem-93303-v502-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v502/tokenizer_config.json
mistralai-mistral-nem-93303-v502-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v502/tokenizer.json
mistralai-mistral-nem-93303-v502-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:10, 32.84it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 52.53it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 46.47it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 45.10it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 50.84it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 46.81it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 45.33it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 50.27it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 46.53it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 35.38it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 36.28it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.17it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 39.57it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 40.03it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 43.28it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 43.36it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:05, 44.15it/s] Loading 0: 29%|██▉ | 105/363 [00:02<00:06, 41.64it/s] Loading 0: 30%|███ | 110/363 [00:02<00:05, 43.05it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 43.24it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 41.54it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 43.70it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 43.04it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 42.53it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 44.04it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 26.78it/s] Loading 0: 41%|████ | 149/363 [00:03<00:07, 27.12it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:06, 33.78it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:06, 33.51it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 36.02it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 36.07it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:04, 38.80it/s] Loading 0: 49%|████▉ | 179/363 [00:04<00:04, 39.75it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:04, 40.95it/s] Loading 0: 52%|█████▏ | 189/363 [00:04<00:04, 42.70it/s] Loading 0: 53%|█████▎ | 194/363 [00:04<00:05, 33.62it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:03, 41.09it/s] Loading 0: 57%|█████▋ | 206/363 [00:05<00:03, 41.81it/s] Loading 0: 58%|█████▊ | 211/363 [00:05<00:03, 42.15it/s] Loading 0: 60%|█████▉ | 216/363 [00:05<00:03, 43.72it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:03, 45.29it/s] Loading 0: 62%|██████▏ | 226/363 [00:05<00:04, 28.10it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 28.69it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 36.26it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 38.16it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.33it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 41.61it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:02, 35.91it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 41.59it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 41.71it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 42.32it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:01, 44.14it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 36.92it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 43.99it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 44.09it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 45.57it/s] Loading 0: 84%|████████▍ | 306/363 [00:07<00:02, 24.48it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 25.62it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 28.06it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 33.91it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 35.51it/s] Loading 0: 91%|█████████ | 331/363 [00:08<00:00, 35.99it/s] Loading 0: 93%|█████████▎| 337/363 [00:08<00:00, 41.33it/s] Loading 0: 94%|█████████▍| 342/363 [00:08<00:00, 42.12it/s] Loading 0: 96%|█████████▌| 347/363 [00:08<00:00, 43.37it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 44.93it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 37.68it/s]
Job mistralai-mistral-nem-93303-v502-mkmlizer completed after 104.93s with status: succeeded
Stopping job with name mistralai-mistral-nem-93303-v502-mkmlizer
Pipeline stage MKMLizer completed in 105.45s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.18s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nem-93303-v502
Waiting for inference service mistralai-mistral-nem-93303-v502 to be ready
Inference service mistralai-mistral-nem-93303-v502 ready after 150.80572819709778s
Pipeline stage MKMLDeployer completed in 151.37s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.2445623874664307s
Received healthy response to inference request in 1.5877890586853027s
Received healthy response to inference request in 1.9146053791046143s
Received healthy response to inference request in 1.6954302787780762s
Received healthy response to inference request in 1.5145525932312012s
5 requests
0 failed requests
5th percentile: 1.5291998863220215
10th percentile: 1.5438471794128419
20th percentile: 1.5731417655944824
30th percentile: 1.6093173027038574
40th percentile: 1.6523737907409668
50th percentile: 1.6954302787780762
60th percentile: 1.7831003189086914
70th percentile: 1.8707703590393066
80th percentile: 1.9805967807769775
90th percentile: 2.112579584121704
95th percentile: 2.1785709857940674
99th percentile: 2.231364107131958
mean time: 1.791387939453125
Pipeline stage StressChecker completed in 10.67s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.74s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 1.01s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v502 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5391.38s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v502 status is now inactive due to auto deactivation removed underperforming models
mistralai-mistral-nem_93303_v502 status is now torndown due to DeploymentManager action