developer_uid: azuruce
submission_id: mistralai-mistral-nem_93303_v263
model_name: mistralai-mistral-nem_93303_v263
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2025-01-10T19:08:13+00:00
num_battles: 10941
num_wins: 5541
celo_rating: 1258.24
family_friendly_score: 0.5966
family_friendly_standard_error: 0.006937844622071036
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.626990682400107, 'latency_mean': 1.594855271577835, 'latency_p50': 1.585463285446167, 'latency_p90': 1.7686869621276855}, {'batch_size': 3, 'throughput': 1.157289083410344, 'latency_mean': 2.580847065448761, 'latency_p50': 2.598298192024231, 'latency_p90': 2.8494089603424073}, {'batch_size': 5, 'throughput': 1.4268780534325196, 'latency_mean': 3.4957832396030426, 'latency_p50': 3.497399091720581, 'latency_p90': 3.880638265609741}, {'batch_size': 6, 'throughput': 1.4892176403315556, 'latency_mean': 4.0012736511230464, 'latency_p50': 4.026386976242065, 'latency_p90': 4.479223990440369}, {'batch_size': 8, 'throughput': 1.5774801505869096, 'latency_mean': 5.044171048402786, 'latency_p50': 5.0491862297058105, 'latency_p90': 5.665850281715393}, {'batch_size': 10, 'throughput': 1.6031519612393443, 'latency_mean': 6.182189167737961, 'latency_p50': 6.15281355381012, 'latency_p90': 7.030495429039001}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: mistralai-mistral-nem_93303_v263
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.46
us_pacific_date: 2025-01-10
win_ratio: 0.5064436523169729
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 100, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>', '####', 'Bot:', 'User:', 'You:', 'Me', '<|im_end|>', '<|eot_id|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nem-93303-v263-mkmlizer
Waiting for job on mistralai-mistral-nem-93303-v263-mkmlizer to finish
mistralai-mistral-nem-93303-v263-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nem-93303-v263-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ /___/ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ Version: 0.11.12 ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ belonging to: ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ Expiration: 2025-04-15 23:59:59 ║
mistralai-mistral-nem-93303-v263-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v263-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nem-93303-v263-mkmlizer: Downloaded to shared memory in 57.159s
mistralai-mistral-nem-93303-v263-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpm1pf7_aa, device:0
mistralai-mistral-nem-93303-v263-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nem-93303-v263-mkmlizer: quantized model in 36.951s
mistralai-mistral-nem-93303-v263-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 94.110s
mistralai-mistral-nem-93303-v263-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nem-93303-v263-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nem-93303-v263-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v263
mistralai-mistral-nem-93303-v263-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v263/config.json
mistralai-mistral-nem-93303-v263-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v263/special_tokens_map.json
mistralai-mistral-nem-93303-v263-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v263/tokenizer_config.json
mistralai-mistral-nem-93303-v263-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v263/tokenizer.json
mistralai-mistral-nem-93303-v263-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v263/flywheel_model.0.safetensors
mistralai-mistral-nem-93303-v263-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.37it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 47.84it/s] Loading 0: 5%|▍ | 18/363 [00:00<00:07, 47.24it/s] Loading 0: 6%|▋ | 23/363 [00:00<00:09, 37.25it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 47.19it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 43.12it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 41.97it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:06, 45.47it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:07, 43.40it/s] Loading 0: 16%|█▌ | 58/363 [00:01<00:07, 43.56it/s] Loading 0: 17%|█▋ | 63/363 [00:01<00:10, 29.98it/s] Loading 0: 18%|█▊ | 67/363 [00:01<00:09, 31.71it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 33.11it/s] Loading 0: 21%|██ | 75/363 [00:01<00:08, 33.35it/s] Loading 0: 22%|██▏ | 80/363 [00:02<00:07, 36.78it/s] Loading 0: 23%|██▎ | 84/363 [00:02<00:07, 35.07it/s] Loading 0: 24%|██▍ | 88/363 [00:02<00:07, 36.27it/s] Loading 0: 25%|██▌ | 92/363 [00:02<00:07, 34.19it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:06, 39.70it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:06, 40.30it/s] Loading 0: 30%|███ | 109/363 [00:02<00:05, 44.88it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:06, 38.26it/s] Loading 0: 33%|███▎ | 119/363 [00:03<00:06, 36.37it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 39.86it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 39.95it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 39.74it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 41.42it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:07, 28.34it/s] Loading 0: 41%|████ | 149/363 [00:04<00:07, 28.37it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:05, 34.96it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 34.52it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 37.24it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 37.43it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:04, 40.12it/s] Loading 0: 49%|████▉ | 179/363 [00:04<00:04, 41.00it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:04, 42.02it/s] Loading 0: 52%|█████▏ | 189/363 [00:04<00:04, 42.85it/s] Loading 0: 53%|█████▎ | 194/363 [00:05<00:04, 34.22it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:03, 40.57it/s] Loading 0: 57%|█████▋ | 206/363 [00:05<00:03, 40.97it/s] Loading 0: 58%|█████▊ | 211/363 [00:05<00:03, 39.71it/s] Loading 0: 60%|█████▉ | 217/363 [00:05<00:03, 39.09it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 32.68it/s] Loading 0: 63%|██████▎ | 227/363 [00:06<00:04, 32.38it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 31.37it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 36.37it/s] Loading 0: 66%|██████▋ | 241/363 [00:06<00:03, 35.23it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.46it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 38.89it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:02, 35.88it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 41.64it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 41.26it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 40.71it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 42.25it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 35.94it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 41.95it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 40.69it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 41.58it/s] Loading 0: 84%|████████▍ | 306/363 [00:14<00:23, 2.46it/s] Loading 0: 85%|████████▌ | 310/363 [00:14<00:16, 3.20it/s] Loading 0: 87%|████████▋ | 315/363 [00:14<00:10, 4.48it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:06, 6.20it/s] Loading 0: 90%|████████▉ | 326/363 [00:15<00:04, 8.73it/s] Loading 0: 91%|█████████ | 331/363 [00:15<00:02, 11.23it/s] Loading 0: 93%|█████████▎| 337/363 [00:15<00:01, 15.29it/s] Loading 0: 94%|█████████▍| 342/363 [00:15<00:01, 18.91it/s] Loading 0: 96%|█████████▌| 347/363 [00:15<00:00, 23.04it/s] Loading 0: 97%|█████████▋| 353/363 [00:15<00:00, 26.97it/s] Loading 0: 99%|█████████▊| 358/363 [00:15<00:00, 30.26it/s]
Job mistralai-mistral-nem-93303-v263-mkmlizer completed after 125.16s with status: succeeded
Stopping job with name mistralai-mistral-nem-93303-v263-mkmlizer
Pipeline stage MKMLizer completed in 125.67s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nem-93303-v263
Waiting for inference service mistralai-mistral-nem-93303-v263 to be ready
Inference service mistralai-mistral-nem-93303-v263 ready after 371.64925146102905s
Pipeline stage MKMLDeployer completed in 372.17s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.0987420082092285s
Received healthy response to inference request in 2.0833377838134766s
Received healthy response to inference request in 1.6927087306976318s
Received healthy response to inference request in 1.3201472759246826s
Received healthy response to inference request in 1.1710126399993896s
5 requests
0 failed requests
5th percentile: 1.2008395671844483
10th percentile: 1.230666494369507
20th percentile: 1.290320348739624
30th percentile: 1.3946595668792725
40th percentile: 1.543684148788452
50th percentile: 1.6927087306976318
60th percentile: 1.8489603519439697
70th percentile: 2.0052119731903075
80th percentile: 2.086418628692627
90th percentile: 2.0925803184509277
95th percentile: 2.095661163330078
99th percentile: 2.0981258392333983
mean time: 1.6731896877288819
Pipeline stage StressChecker completed in 9.70s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.73s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.65s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v263 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2615.25s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v263 status is now inactive due to auto deactivation removed underperforming models
mistralai-mistral-nem_93303_v263 status is now torndown due to DeploymentManager action