developer_uid: zonemercy
submission_id: mistralai-mistral-nem_93303_v256
model_name: tempv1-0
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2025-01-07T23:27:46+00:00
num_battles: 6772
num_wins: 3073
celo_rating: 1249.13
family_friendly_score: 0.594
family_friendly_standard_error: 0.006944983801277006
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 4
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.642875564468095, 'latency_mean': 1.5554217267036439, 'latency_p50': 1.5565764904022217, 'latency_p90': 1.716898250579834}, {'batch_size': 3, 'throughput': 1.2789822941791251, 'latency_mean': 2.3421079897880555, 'latency_p50': 2.3208184242248535, 'latency_p90': 2.6117709159851072}, {'batch_size': 5, 'throughput': 1.6249221813507464, 'latency_mean': 3.0631342017650605, 'latency_p50': 3.058378577232361, 'latency_p90': 3.4935783624649046}, {'batch_size': 6, 'throughput': 1.710226695321095, 'latency_mean': 3.4902000045776367, 'latency_p50': 3.4800747632980347, 'latency_p90': 3.9361815214157105}, {'batch_size': 8, 'throughput': 1.871829064820288, 'latency_mean': 4.233401241302491, 'latency_p50': 4.252002120018005, 'latency_p90': 4.697621178627014}, {'batch_size': 10, 'throughput': 1.9522912839090838, 'latency_mean': 5.0829668915271755, 'latency_p50': 5.106476664543152, 'latency_p90': 5.669225764274597}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: tempv1-0
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.77
us_pacific_date: 2025-01-07
win_ratio: 0.45378027170702895
generation_params: {'temperature': 0.9, 'top_p': 1.0, 'min_p': 0.05, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['<|im_end|>', 'User:', 'Bot:', 'You:', '</s>', '\n', '####', '<|eot_id|>'], 'max_input_tokens': 1024, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nem-93303-v256-mkmlizer
Waiting for job on mistralai-mistral-nem-93303-v256-mkmlizer to finish
mistralai-mistral-nem-93303-v256-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nem-93303-v256-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ /___/ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ Version: 0.11.12 ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ belonging to: ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ Expiration: 2025-04-15 23:59:59 ║
mistralai-mistral-nem-93303-v256-mkmlizer: ║ ║
mistralai-mistral-nem-93303-v256-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nem-93303-v256-mkmlizer: Downloaded to shared memory in 57.657s
mistralai-mistral-nem-93303-v256-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp5jqrjy3f, device:0
mistralai-mistral-nem-93303-v256-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nem-93303-v256-mkmlizer: quantized model in 37.196s
mistralai-mistral-nem-93303-v256-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 94.853s
mistralai-mistral-nem-93303-v256-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nem-93303-v256-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nem-93303-v256-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v256
mistralai-mistral-nem-93303-v256-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v256/special_tokens_map.json
mistralai-mistral-nem-93303-v256-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v256/config.json
mistralai-mistral-nem-93303-v256-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v256/tokenizer_config.json
mistralai-mistral-nem-93303-v256-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v256/tokenizer.json
mistralai-mistral-nem-93303-v256-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nem-93303-v256/flywheel_model.0.safetensors
mistralai-mistral-nem-93303-v256-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:12, 28.48it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 45.45it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:07, 44.36it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:07, 44.70it/s] Loading 0: 7%|▋ | 27/363 [00:00<00:07, 45.96it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:09, 35.03it/s] Loading 0: 11%|█ | 39/363 [00:00<00:07, 42.92it/s] Loading 0: 12%|█▏ | 44/363 [00:01<00:07, 42.37it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:07, 42.75it/s] Loading 0: 15%|█▍ | 54/363 [00:01<00:06, 44.47it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:07, 41.58it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 29.33it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:08, 35.85it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 38.38it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 33.89it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 41.39it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 41.55it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 42.42it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 43.83it/s] Loading 0: 30%|███ | 110/363 [00:02<00:05, 42.76it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 42.98it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 41.66it/s] Loading 0: 35%|███▍ | 126/363 [00:03<00:05, 44.77it/s] Loading 0: 36%|███▌ | 131/363 [00:03<00:05, 45.01it/s] Loading 0: 37%|███▋ | 136/363 [00:03<00:06, 37.28it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 33.36it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 33.85it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 32.06it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 37.23it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 36.81it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 41.14it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 41.17it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 40.66it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:03, 46.23it/s] Loading 0: 52%|█████▏ | 190/363 [00:04<00:03, 44.73it/s] Loading 0: 54%|█████▎ | 195/363 [00:04<00:04, 40.83it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:03, 43.98it/s] Loading 0: 57%|█████▋ | 206/363 [00:05<00:03, 42.77it/s] Loading 0: 58%|█████▊ | 211/363 [00:05<00:03, 41.69it/s] Loading 0: 60%|█████▉ | 216/363 [00:05<00:03, 41.97it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:03, 43.70it/s] Loading 0: 62%|██████▏ | 226/363 [00:05<00:04, 27.72it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 27.98it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 35.55it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 37.40it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.11it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 40.93it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 33.72it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 40.78it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 40.93it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 41.41it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 43.27it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 37.21it/s] Loading 0: 80%|████████ | 292/363 [00:07<00:01, 45.26it/s] Loading 0: 82%|████████▏ | 298/363 [00:07<00:01, 43.69it/s] Loading 0: 83%|████████▎ | 303/363 [00:07<00:01, 43.60it/s] Loading 0: 85%|████████▍ | 308/363 [00:14<00:21, 2.59it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:15, 3.32it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.42it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:05, 7.36it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.46it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.45it/s] Loading 0: 95%|█████████▍| 344/363 [00:15<00:01, 16.81it/s] Loading 0: 96%|█████████▌| 349/363 [00:15<00:00, 20.04it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 26.41it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 28.68it/s]
Job mistralai-mistral-nem-93303-v256-mkmlizer completed after 125.19s with status: succeeded
Stopping job with name mistralai-mistral-nem-93303-v256-mkmlizer
Pipeline stage MKMLizer completed in 125.66s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nem-93303-v256
Waiting for inference service mistralai-mistral-nem-93303-v256 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service mistralai-mistral-nem-93303-v256 ready after 362.0631649494171s
Pipeline stage MKMLDeployer completed in 362.57s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.4424307346343994s
Received healthy response to inference request in 0.9830052852630615s
Received healthy response to inference request in 1.7212653160095215s
Received healthy response to inference request in 0.8456451892852783s
Received healthy response to inference request in 0.8789119720458984s
5 requests
0 failed requests
5th percentile: 0.8522985458374024
10th percentile: 0.8589519023895263
20th percentile: 0.8722586154937744
30th percentile: 0.899730634689331
40th percentile: 0.9413679599761963
50th percentile: 0.9830052852630615
60th percentile: 1.1667754650115967
70th percentile: 1.3505456447601318
80th percentile: 1.498197650909424
90th percentile: 1.6097314834594727
95th percentile: 1.665498399734497
99th percentile: 1.7101119327545167
mean time: 1.1742516994476317
Pipeline stage StressChecker completed in 7.25s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.69s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.70s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v256 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.09s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service mistralai-mistral-nem-93303-v256-profiler
Waiting for inference service mistralai-mistral-nem-93303-v256-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2418.26s
Shutdown handler de-registered
mistralai-mistral-nem_93303_v256 status is now inactive due to auto deactivation removed underperforming models
mistralai-mistral-nem_93303_v256 status is now torndown due to DeploymentManager action