developer_uid: azuruce
submission_id: marinaraspaghetti-nemomi_1739_v2
model_name: marinaraspaghetti-nemomi_1739_v2
model_group: MarinaraSpaghetti/NemoMi
status: torndown
timestamp: 2024-09-24T21:13:22+00:00
num_battles: 4378
num_wins: 2331
celo_rating: 1279.59
family_friendly_score: 0.0
submission_type: basic
model_repo: MarinaraSpaghetti/NemoMix-Unleashed-12B
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.612093510310394, 'latency_mean': 1.633665292263031, 'latency_p50': 1.6332367658615112, 'latency_p90': 1.7988165616989136}, {'batch_size': 3, 'throughput': 1.0663370823911618, 'latency_mean': 2.802231738567352, 'latency_p50': 2.8093026876449585, 'latency_p90': 3.0751998662948608}, {'batch_size': 5, 'throughput': 1.2106746726199449, 'latency_mean': 4.114099498987198, 'latency_p50': 4.155648827552795, 'latency_p90': 4.625108623504638}, {'batch_size': 6, 'throughput': 1.2393644954592227, 'latency_mean': 4.813271427154541, 'latency_p50': 4.823077321052551, 'latency_p90': 5.440336155891418}, {'batch_size': 8, 'throughput': 1.2132802200220532, 'latency_mean': 6.550795004367829, 'latency_p50': 6.577283620834351, 'latency_p90': 7.407297801971436}, {'batch_size': 10, 'throughput': 1.1722356173568742, 'latency_mean': 8.471066427230834, 'latency_p50': 8.535391092300415, 'latency_p90': 9.600676274299621}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: marinaraspaghetti-nemomi_1739_v2
ineligible_reason: num_battles<5000
is_internal_developer: True
language_model: MarinaraSpaghetti/NemoMix-Unleashed-12B
model_size: 13B
ranking_group: single
throughput_3p7s: 1.18
us_pacific_date: 2024-09-24
win_ratio: 0.5324349017816354
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '<|eot_id|>', '<|end_of_text|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '### Response:\n{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name marinaraspaghetti-nemomi-1739-v2-mkmlizer
Waiting for job on marinaraspaghetti-nemomi-1739-v2-mkmlizer to finish
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ _____ __ __ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ /___/ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ Version: 0.10.1 ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ https://mk1.ai ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ The license key for the current software has been verified as ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ belonging to: ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ Chai Research Corp. ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ║ ║
marinaraspaghetti-nemomi-1739-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
marinaraspaghetti-nemomi-1739-v2-mkmlizer: Downloaded to shared memory in 27.204s
marinaraspaghetti-nemomi-1739-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpmsj_bdbd, device:0
marinaraspaghetti-nemomi-1739-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
marinaraspaghetti-nemomi-1739-v2-mkmlizer: quantized model in 35.762s
marinaraspaghetti-nemomi-1739-v2-mkmlizer: Processed model MarinaraSpaghetti/NemoMix-Unleashed-12B in 62.966s
marinaraspaghetti-nemomi-1739-v2-mkmlizer: creating bucket guanaco-mkml-models
marinaraspaghetti-nemomi-1739-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
marinaraspaghetti-nemomi-1739-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/marinaraspaghetti-nemomi-1739-v2
marinaraspaghetti-nemomi-1739-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/marinaraspaghetti-nemomi-1739-v2/config.json
marinaraspaghetti-nemomi-1739-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/marinaraspaghetti-nemomi-1739-v2/special_tokens_map.json
marinaraspaghetti-nemomi-1739-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/marinaraspaghetti-nemomi-1739-v2/tokenizer_config.json
marinaraspaghetti-nemomi-1739-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/marinaraspaghetti-nemomi-1739-v2/tokenizer.json
marinaraspaghetti-nemomi-1739-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/marinaraspaghetti-nemomi-1739-v2/flywheel_model.0.safetensors
marinaraspaghetti-nemomi-1739-v2-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%| | 2/363 [00:06<18:04, 3.00s/it] Loading 0: 2%|▏ | 6/363 [00:06<04:47, 1.24it/s] Loading 0: 4%|▎ | 13/363 [00:06<01:42, 3.41it/s] Loading 0: 5%|▍ | 17/363 [00:06<01:09, 4.95it/s] Loading 0: 6%|▋ | 23/363 [00:06<00:42, 8.03it/s] Loading 0: 8%|▊ | 29/363 [00:06<00:28, 11.69it/s] Loading 0: 9%|▉ | 34/363 [00:06<00:21, 15.19it/s] Loading 0: 11%|█ | 40/363 [00:07<00:18, 17.25it/s] Loading 0: 12%|█▏ | 44/363 [00:07<00:16, 19.91it/s] Loading 0: 14%|█▍ | 50/363 [00:07<00:12, 25.61it/s] Loading 0: 15%|█▌ | 56/363 [00:07<00:10, 30.16it/s] Loading 0: 17%|█▋ | 61/363 [00:07<00:09, 33.38it/s] Loading 0: 19%|█▊ | 68/363 [00:07<00:07, 40.06it/s] Loading 0: 20%|██ | 74/363 [00:07<00:07, 40.72it/s] Loading 0: 22%|██▏ | 79/363 [00:07<00:06, 40.99it/s] Loading 0: 24%|██▎ | 86/363 [00:07<00:05, 47.07it/s] Loading 0: 25%|██▌ | 92/363 [00:08<00:06, 45.11it/s] Loading 0: 27%|██▋ | 97/363 [00:08<00:06, 44.25it/s] Loading 0: 29%|██▊ | 104/363 [00:08<00:05, 48.46it/s] Loading 0: 30%|███ | 110/363 [00:08<00:05, 47.74it/s] Loading 0: 32%|███▏ | 115/363 [00:08<00:05, 44.62it/s] Loading 0: 33%|███▎ | 121/363 [00:08<00:07, 32.89it/s] Loading 0: 34%|███▍ | 125/363 [00:09<00:07, 32.20it/s] Loading 0: 36%|███▌ | 130/363 [00:09<00:06, 34.48it/s] Loading 0: 37%|███▋ | 134/363 [00:09<00:06, 35.11it/s] Loading 0: 39%|███▊ | 140/363 [00:09<00:05, 39.83it/s] Loading 0: 40%|████ | 146/363 [00:09<00:05, 41.51it/s] Loading 0: 42%|████▏ | 151/363 [00:09<00:05, 41.44it/s] Loading 0: 43%|████▎ | 157/363 [00:09<00:04, 45.73it/s] Loading 0: 45%|████▍ | 162/363 [00:09<00:04, 46.10it/s] Loading 0: 46%|████▌ | 167/363 [00:09<00:04, 45.69it/s] Loading 0: 48%|████▊ | 173/363 [00:10<00:04, 45.14it/s] Loading 0: 49%|████▉ | 178/363 [00:10<00:04, 41.27it/s] Loading 0: 51%|█████ | 184/363 [00:10<00:03, 45.75it/s] Loading 0: 52%|█████▏ | 189/363 [00:10<00:03, 45.17it/s] Loading 0: 53%|█████▎ | 194/363 [00:10<00:03, 46.12it/s] Loading 0: 55%|█████▌ | 200/363 [00:10<00:03, 44.82it/s] Loading 0: 56%|█████▋ | 205/363 [00:10<00:05, 30.39it/s] Loading 0: 58%|█████▊ | 212/363 [00:11<00:04, 36.76it/s] Loading 0: 60%|██████ | 218/363 [00:11<00:03, 36.30it/s] Loading 0: 61%|██████▏ | 223/363 [00:11<00:03, 36.85it/s] Loading 0: 63%|██████▎ | 229/363 [00:11<00:03, 40.72it/s] Loading 0: 64%|██████▍ | 234/363 [00:11<00:03, 41.15it/s] Loading 0: 66%|██████▌ | 239/363 [00:11<00:02, 42.87it/s] Loading 0: 67%|██████▋ | 245/363 [00:11<00:02, 43.07it/s] Loading 0: 69%|██████▉ | 250/363 [00:11<00:02, 42.54it/s] Loading 0: 71%|███████ | 257/363 [00:12<00:02, 47.34it/s] Loading 0: 72%|███████▏ | 262/363 [00:12<00:02, 47.61it/s] Loading 0: 74%|███████▎ | 267/363 [00:12<00:02, 39.83it/s] Loading 0: 75%|███████▌ | 274/363 [00:12<00:01, 47.01it/s] Loading 0: 77%|███████▋ | 280/363 [00:12<00:01, 48.27it/s] Loading 0: 79%|███████▉ | 286/363 [00:12<00:02, 31.11it/s] Loading 0: 80%|████████ | 292/363 [00:13<00:01, 35.83it/s] Loading 0: 82%|████████▏ | 297/363 [00:13<00:01, 37.50it/s] Loading 0: 83%|████████▎ | 302/363 [00:13<00:01, 39.31it/s] Loading 0: 85%|████████▍ | 308/363 [00:13<00:01, 39.74it/s] Loading 0: 86%|████████▌ | 313/363 [00:13<00:01, 39.78it/s] Loading 0: 88%|████████▊ | 320/363 [00:13<00:00, 45.31it/s] Loading 0: 90%|████████▉ | 326/363 [00:13<00:00, 43.17it/s] Loading 0: 91%|█████████ | 331/363 [00:13<00:00, 40.30it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:00, 45.54it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:00, 45.70it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 43.80it/s] Loading 0: 98%|█████████▊| 355/363 [00:14<00:00, 47.40it/s] Loading 0: 99%|█████████▉| 360/363 [00:14<00:00, 47.58it/s]
Job marinaraspaghetti-nemomi-1739-v2-mkmlizer completed after 92.98s with status: succeeded
Stopping job with name marinaraspaghetti-nemomi-1739-v2-mkmlizer
Pipeline stage MKMLizer completed in 93.86s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service marinaraspaghetti-nemomi-1739-v2
Waiting for inference service marinaraspaghetti-nemomi-1739-v2 to be ready
Inference service marinaraspaghetti-nemomi-1739-v2 ready after 222.0229630470276s
Pipeline stage MKMLDeployer completed in 222.41s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.0833277702331543s
Received healthy response to inference request in 1.5849323272705078s
Received healthy response to inference request in 1.5686006546020508s
Received healthy response to inference request in 3.5617411136627197s
Received healthy response to inference request in 4.957067966461182s
5 requests
0 failed requests
5th percentile: 1.5718669891357422
10th percentile: 1.5751333236694336
20th percentile: 1.5816659927368164
30th percentile: 1.884611415863037
40th percentile: 2.483969593048096
50th percentile: 3.0833277702331543
60th percentile: 3.2746931076049806
70th percentile: 3.4660584449768064
80th percentile: 3.840806484222412
90th percentile: 4.398937225341797
95th percentile: 4.678002595901489
99th percentile: 4.901254892349243
mean time: 2.951133966445923
Pipeline stage StressChecker completed in 15.37s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 3.47s
Shutdown handler de-registered
marinaraspaghetti-nemomi_1739_v2 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service marinaraspaghetti-nemomi-1739-v2-profiler
Waiting for inference service marinaraspaghetti-nemomi-1739-v2-profiler to be ready
Inference service marinaraspaghetti-nemomi-1739-v2-profiler ready after 210.50640511512756s
Pipeline stage MKMLProfilerDeployer completed in 210.86s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/marinaraspaghetti-neda5a7c5cdf193db924d8909264d8f685-deplobt842:/code/chaiverse_profiler_1727212993 --namespace tenant-chaiml-guanaco
kubectl exec -it marinaraspaghetti-neda5a7c5cdf193db924d8909264d8f685-deplobt842 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1727212993 && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 64 --summary /code/chaiverse_profiler_1727212993/summary.json'
kubectl exec -it marinaraspaghetti-neda5a7c5cdf193db924d8909264d8f685-deplobt842 --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1727212993/summary.json'
Pipeline stage MKMLProfilerRunner completed in 1181.65s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service marinaraspaghetti-nemomi-1739-v2-profiler is running
Tearing down inference service marinaraspaghetti-nemomi-1739-v2-profiler
Service marinaraspaghetti-nemomi-1739-v2-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.21s
Shutdown handler de-registered
marinaraspaghetti-nemomi_1739_v2 status is now inactive due to auto deactivation removed underperforming models
marinaraspaghetti-nemomi_1739_v2 status is now torndown due to DeploymentManager action