developer_uid: junhua024
submission_id: junhua024-chai-16-full-_10179_v1
model_name: junhua024-chai-16-full-_10179_v1
model_group: junhua024/chai_16_full_1
status: torndown
timestamp: 2025-07-19T18:26:35+00:00
num_battles: 9451
num_wins: 4699
celo_rating: 1281.81
family_friendly_score: 0.5544
family_friendly_standard_error: 0.0070290915486995904
submission_type: basic
model_repo: junhua024/chai_16_full_106_o_ffn_1925
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5883249651329983, 'latency_mean': 1.6996279168128967, 'latency_p50': 1.7058100700378418, 'latency_p90': 1.8803967237472534}, {'batch_size': 3, 'throughput': 1.0515202250846303, 'latency_mean': 2.8398239147663116, 'latency_p50': 2.834055185317993, 'latency_p90': 3.1247344255447387}, {'batch_size': 5, 'throughput': 1.263383505366169, 'latency_mean': 3.944936364889145, 'latency_p50': 3.9202762842178345, 'latency_p90': 4.421469378471374}, {'batch_size': 6, 'throughput': 1.315728924508289, 'latency_mean': 4.534695488214493, 'latency_p50': 4.5501484870910645, 'latency_p90': 4.942951703071595}, {'batch_size': 8, 'throughput': 1.386695464994231, 'latency_mean': 5.740421512126923, 'latency_p50': 5.7238253355026245, 'latency_p90': 6.4033287525177}, {'batch_size': 10, 'throughput': 1.4222820072391178, 'latency_mean': 6.976042340993882, 'latency_p50': 6.969924330711365, 'latency_p90': 7.800225019454956}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: junhua024-chai-16-full-_10179_v1
is_internal_developer: False
language_model: junhua024/chai_16_full_106_o_ffn_1925
model_size: 13B
ranking_group: single
throughput_3p7s: 1.23
us_pacific_date: 2025-07-19
win_ratio: 0.4971960639085811
generation_params: {'temperature': 1.0, 'top_p': 0.88, 'min_p': 0.0, 'top_k': 10, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name junhua024-chai-16-full-10179-v1-mkmlizer
Waiting for job on junhua024-chai-16-full-10179-v1-mkmlizer to finish
junhua024-chai-16-full-10179-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ Version: 0.29.15 ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ https://mk1.ai ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ The license key for the current software has been verified as ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ belonging to: ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ Chai Research Corp. ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
junhua024-chai-16-full-10179-v1-mkmlizer: ║ ║
junhua024-chai-16-full-10179-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-16-full-10179-v1-mkmlizer: Downloaded to shared memory in 131.045s
junhua024-chai-16-full-10179-v1-mkmlizer: Checking if junhua024/chai_16_full_106_o_ffn_1925 already exists in ChaiML
junhua024-chai-16-full-10179-v1-mkmlizer: Creating repo ChaiML/chai_16_full_106_o_ffn_1925 and uploading /tmp/tmpbtj9sgto to it
junhua024-chai-16-full-10179-v1-mkmlizer: 0%| | 0/26 [00:00<?, ?it/s] 4%|▍ | 1/26 [00:01<00:46, 1.86s/it] 8%|▊ | 2/26 [00:03<00:36, 1.54s/it] 12%|█▏ | 3/26 [00:04<00:33, 1.45s/it] 15%|█▌ | 4/26 [00:05<00:30, 1.38s/it] 19%|█▉ | 5/26 [00:07<00:28, 1.35s/it] 23%|██▎ | 6/26 [00:08<00:27, 1.37s/it] 27%|██▋ | 7/26 [00:09<00:26, 1.37s/it] 31%|███ | 8/26 [00:11<00:24, 1.38s/it] 35%|███▍ | 9/26 [00:12<00:23, 1.37s/it] 38%|███▊ | 10/26 [00:13<00:21, 1.35s/it] 42%|████▏ | 11/26 [00:15<00:20, 1.33s/it] 46%|████▌ | 12/26 [00:17<00:21, 1.54s/it] 50%|█████ | 13/26 [00:18<00:20, 1.55s/it] 54%|█████▍ | 14/26 [00:21<00:24, 2.01s/it] 58%|█████▊ | 15/26 [00:23<00:20, 1.84s/it] 62%|██████▏ | 16/26 [00:26<00:22, 2.25s/it] 65%|██████▌ | 17/26 [00:27<00:17, 1.99s/it] 69%|██████▉ | 18/26 [00:29<00:14, 1.80s/it] 73%|███████▎ | 19/26 [00:30<00:11, 1.63s/it] 77%|███████▋ | 20/26 [00:32<00:09, 1.61s/it] 81%|████████ | 21/26 [00:33<00:08, 1.66s/it] 85%|████████▍ | 22/26 [00:35<00:06, 1.70s/it] 88%|████████▊ | 23/26 [00:36<00:04, 1.56s/it] 92%|█████████▏| 24/26 [00:38<00:03, 1.60s/it] 96%|█████████▌| 25/26 [00:39<00:01, 1.51s/it] 100%|██████████| 26/26 [00:40<00:00, 1.39s/it] 100%|██████████| 26/26 [00:40<00:00, 1.58s/it]
junhua024-chai-16-full-10179-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpbtj9sgto, device:0
junhua024-chai-16-full-10179-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
junhua024-chai-16-full-10179-v1-mkmlizer: quantized model in 31.125s
junhua024-chai-16-full-10179-v1-mkmlizer: Processed model junhua024/chai_16_full_106_o_ffn_1925 in 228.869s
junhua024-chai-16-full-10179-v1-mkmlizer: creating bucket guanaco-mkml-models
junhua024-chai-16-full-10179-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
junhua024-chai-16-full-10179-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/junhua024-chai-16-full-10179-v1/nvidia
junhua024-chai-16-full-10179-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/junhua024-chai-16-full-10179-v1/nvidia/config.json
junhua024-chai-16-full-10179-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/junhua024-chai-16-full-10179-v1/nvidia/special_tokens_map.json
junhua024-chai-16-full-10179-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/junhua024-chai-16-full-10179-v1/nvidia/tokenizer_config.json
junhua024-chai-16-full-10179-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/junhua024-chai-16-full-10179-v1/nvidia/tokenizer.json
junhua024-chai-16-full-10179-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/junhua024-chai-16-full-10179-v1/nvidia/flywheel_model.0.safetensors
junhua024-chai-16-full-10179-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%| | 2/363 [00:00<00:22, 15.77it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:19, 18.30it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:11, 30.08it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:10, 32.14it/s] Loading 0: 6%|▋ | 23/363 [00:00<00:09, 34.72it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:06, 48.39it/s] Loading 0: 10%|█ | 38/363 [00:01<00:08, 37.15it/s] Loading 0: 12%|█▏ | 43/363 [00:01<00:08, 36.81it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:07, 40.98it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:08, 34.24it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:08, 33.88it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:08, 35.94it/s] Loading 0: 19%|█▉ | 69/363 [00:01<00:08, 34.44it/s] Loading 0: 20%|██ | 74/363 [00:02<00:07, 37.94it/s] Loading 0: 22%|██▏ | 79/363 [00:02<00:07, 36.83it/s] Loading 0: 23%|██▎ | 83/363 [00:02<00:07, 36.67it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 40.65it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 39.74it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:08, 30.60it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:08, 31.90it/s] Loading 0: 31%|███ | 113/363 [00:03<00:06, 40.60it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:07, 34.37it/s] Loading 0: 34%|███▎ | 122/363 [00:03<00:07, 33.49it/s] Loading 0: 35%|███▌ | 128/363 [00:03<00:06, 35.20it/s] Loading 0: 36%|███▋ | 132/363 [00:03<00:06, 33.77it/s] Loading 0: 38%|███▊ | 138/363 [00:03<00:06, 33.09it/s] Loading 0: 39%|███▉ | 143/363 [00:04<00:06, 32.85it/s] Loading 0: 41%|████ | 149/363 [00:04<00:06, 34.41it/s] Loading 0: 43%|████▎ | 155/363 [00:04<00:05, 39.81it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 38.44it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 37.24it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 37.07it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:04, 40.14it/s] Loading 0: 49%|████▉ | 179/363 [00:05<00:05, 34.55it/s] Loading 0: 50%|█████ | 183/363 [00:05<00:05, 35.23it/s] Loading 0: 52%|█████▏ | 187/363 [00:05<00:05, 34.46it/s] Loading 0: 53%|█████▎ | 191/363 [00:05<00:05, 30.04it/s] Loading 0: 54%|█████▎ | 195/363 [00:05<00:05, 29.46it/s] Loading 0: 55%|█████▌ | 200/363 [00:05<00:04, 33.39it/s] Loading 0: 56%|█████▌ | 204/363 [00:05<00:04, 34.45it/s] Loading 0: 57%|█████▋ | 208/363 [00:05<00:05, 30.30it/s] Loading 0: 58%|█████▊ | 212/363 [00:06<00:05, 29.00it/s] Loading 0: 60%|██████ | 218/363 [00:06<00:04, 35.17it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:04, 32.59it/s] Loading 0: 63%|██████▎ | 227/363 [00:06<00:04, 32.76it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 30.55it/s] Loading 0: 66%|██████▌ | 239/363 [00:06<00:03, 37.41it/s] Loading 0: 67%|██████▋ | 243/363 [00:07<00:03, 30.49it/s] Loading 0: 68%|██████▊ | 248/363 [00:07<00:03, 31.38it/s] Loading 0: 70%|██████▉ | 254/363 [00:07<00:03, 32.64it/s] Loading 0: 71%|███████ | 258/363 [00:07<00:03, 31.78it/s] Loading 0: 73%|███████▎ | 264/363 [00:07<00:03, 32.84it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 32.17it/s] Loading 0: 76%|███████▌ | 275/363 [00:07<00:02, 33.82it/s] Loading 0: 77%|███████▋ | 281/363 [00:08<00:02, 39.24it/s] Loading 0: 79%|███████▉ | 286/363 [00:08<00:02, 37.44it/s] Loading 0: 80%|███████▉ | 290/363 [00:08<00:02, 36.45it/s] Loading 0: 81%|████████ | 294/363 [00:08<00:02, 33.87it/s] Loading 0: 83%|████████▎ | 302/363 [00:08<00:01, 41.12it/s] Loading 0: 85%|████████▍ | 307/363 [00:08<00:01, 34.50it/s] Loading 0: 86%|████████▌ | 311/363 [00:08<00:01, 33.55it/s] Loading 0: 87%|████████▋ | 317/363 [00:09<00:01, 35.85it/s] Loading 0: 88%|████████▊ | 321/363 [00:09<00:01, 34.68it/s] Loading 0: 90%|█████████ | 327/363 [00:09<00:01, 34.67it/s] Loading 0: 91%|█████████▏| 332/363 [00:09<00:00, 34.77it/s] Loading 0: 93%|█████████▎| 338/363 [00:09<00:00, 36.15it/s] Loading 0: 95%|█████████▌| 346/363 [00:09<00:00, 45.69it/s] Loading 0: 97%|█████████▋| 351/363 [00:10<00:00, 25.34it/s] Loading 0: 98%|█████████▊| 355/363 [00:10<00:00, 27.41it/s] Loading 0: 99%|█████████▉| 359/363 [00:10<00:00, 29.60it/s]
Job junhua024-chai-16-full-10179-v1-mkmlizer completed after 256.56s with status: succeeded
Stopping job with name junhua024-chai-16-full-10179-v1-mkmlizer
Pipeline stage MKMLizer completed in 257.15s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service junhua024-chai-16-full-10179-v1
Waiting for inference service junhua024-chai-16-full-10179-v1 to be ready
Failed to get response for submission junhua024-chai-16-full-_69709_v6: HTTPConnectionPool(host='junhua024-chai-16-full-69709-v6-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission chaiml-nis-qwen32b-sim_98336_v34: HTTPConnectionPool(host='chaiml-nis-qwen32b-sim-98336-v34-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission junhua024-chai-16-full-_69709_v6: HTTPConnectionPool(host='junhua024-chai-16-full-69709-v6-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission junhua024-chai-16-full-_69709_v6: HTTPConnectionPool(host='junhua024-chai-16-full-69709-v6-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Inference service junhua024-chai-16-full-10179-v1 ready after 332.37820529937744s
Pipeline stage MKMLDeployer completed in 333.14s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.4561634063720703s
Received healthy response to inference request in 2.036715269088745s
Received healthy response to inference request in 1.6923677921295166s
Received healthy response to inference request in 1.555800437927246s
Received healthy response to inference request in 1.7347805500030518s
5 requests
0 failed requests
5th percentile: 1.5831139087677002
10th percentile: 1.6104273796081543
20th percentile: 1.6650543212890625
30th percentile: 1.7008503437042237
40th percentile: 1.7178154468536377
50th percentile: 1.7347805500030518
60th percentile: 1.8555544376373292
70th percentile: 1.9763283252716064
80th percentile: 2.12060489654541
90th percentile: 2.2883841514587404
95th percentile: 2.3722737789154054
99th percentile: 2.439385480880737
mean time: 1.895165491104126
Pipeline stage StressChecker completed in 11.47s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.80s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.69s
Shutdown handler de-registered
junhua024-chai-16-full-_10179_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service junhua024-chai-16-full-10179-v1-profiler
Waiting for inference service junhua024-chai-16-full-10179-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5042.47s
Shutdown handler de-registered
junhua024-chai-16-full-_10179_v1 status is now inactive due to auto deactivation removed underperforming models
junhua024-chai-16-full-_10179_v1 status is now torndown due to DeploymentManager action