developer_uid: junhua024
submission_id: junhua024-chai-1-full-002_v13
model_name: junhua024-chai-1-full-002_v13
model_group: junhua024/chai_1-full_00
status: torndown
timestamp: 2025-06-29T06:06:35+00:00
num_battles: 7393
num_wins: 3265
celo_rating: 1236.16
family_friendly_score: 0.5878
family_friendly_standard_error: 0.006961194725045407
submission_type: basic
model_repo: junhua024/chai_1-full_002
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5975806986368511, 'latency_mean': 1.6732595193386077, 'latency_p50': 1.6641544103622437, 'latency_p90': 1.8459686279296874}, {'batch_size': 3, 'throughput': 1.0796323172700364, 'latency_mean': 2.775658901929855, 'latency_p50': 2.7574294805526733, 'latency_p90': 3.1003100156784056}, {'batch_size': 5, 'throughput': 1.2831679442136883, 'latency_mean': 3.87226221203804, 'latency_p50': 3.8821319341659546, 'latency_p90': 4.374598884582519}, {'batch_size': 6, 'throughput': 1.341491318609563, 'latency_mean': 4.443964992761612, 'latency_p50': 4.465096354484558, 'latency_p90': 4.974966311454773}, {'batch_size': 8, 'throughput': 1.4148392256503215, 'latency_mean': 5.617647976875305, 'latency_p50': 5.533970594406128, 'latency_p90': 6.229112339019776}, {'batch_size': 10, 'throughput': 1.4366817405583925, 'latency_mean': 6.907708855867386, 'latency_p50': 6.978996515274048, 'latency_p90': 7.6927831172943115}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: junhua024-chai-1-full-002_v13
is_internal_developer: False
language_model: junhua024/chai_1-full_002
model_size: 13B
ranking_group: single
throughput_3p7s: 1.27
us_pacific_date: 2025-06-28
win_ratio: 0.44163397808738
generation_params: {'temperature': 1.05, 'top_p': 1.0, 'min_p': 0.2, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name junhua024-chai-1-full-002-v13-mkmlizer
Waiting for job on junhua024-chai-1-full-002-v13-mkmlizer to finish
junhua024-chai-1-full-002-v13-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
junhua024-chai-1-full-002-v13-mkmlizer: ║ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ Version: 0.29.3 ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ https://mk1.ai ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ The license key for the current software has been verified as ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ belonging to: ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ Chai Research Corp. ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
junhua024-chai-1-full-002-v13-mkmlizer: ║ ║
junhua024-chai-1-full-002-v13-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-1-full-002-v13-mkmlizer: Downloaded to shared memory in 78.909s
junhua024-chai-1-full-002-v13-mkmlizer: Checking if junhua024/chai_1-full_002 already exists in ChaiML
junhua024-chai-1-full-002-v13-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpim7g488e, device:0
junhua024-chai-1-full-002-v13-mkmlizer: Saving flywheel model at /dev/shm/model_cache
junhua024-chai-1-full-002-v13-mkmlizer: quantized model in 31.880s
junhua024-chai-1-full-002-v13-mkmlizer: Processed model junhua024/chai_1-full_002 in 110.864s
junhua024-chai-1-full-002-v13-mkmlizer: creating bucket guanaco-mkml-models
junhua024-chai-1-full-002-v13-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
junhua024-chai-1-full-002-v13-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/junhua024-chai-1-full-002-v13
junhua024-chai-1-full-002-v13-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/junhua024-chai-1-full-002-v13/config.json
junhua024-chai-1-full-002-v13-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/junhua024-chai-1-full-002-v13/special_tokens_map.json
junhua024-chai-1-full-002-v13-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/junhua024-chai-1-full-002-v13/tokenizer_config.json
junhua024-chai-1-full-002-v13-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/junhua024-chai-1-full-002-v13/tokenizer.json
junhua024-chai-1-full-002-v13-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/junhua024-chai-1-full-002-v13/flywheel_model.0.safetensors
junhua024-chai-1-full-002-v13-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%| | 2/363 [00:00<00:22, 16.37it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:20, 17.30it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:12, 28.53it/s] Loading 0: 4%|▍ | 14/363 [00:00<00:12, 28.07it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:14, 23.41it/s] Loading 0: 6%|▋ | 23/363 [00:00<00:12, 27.94it/s] Loading 0: 8%|▊ | 29/363 [00:00<00:09, 35.16it/s] Loading 0: 9%|▉ | 34/363 [00:01<00:09, 34.33it/s] Loading 0: 10%|█ | 38/363 [00:01<00:09, 34.29it/s] Loading 0: 12%|█▏ | 42/363 [00:01<00:09, 32.62it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:08, 38.84it/s] Loading 0: 15%|█▍ | 54/363 [00:01<00:09, 31.05it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:09, 33.43it/s] Loading 0: 18%|█▊ | 65/363 [00:02<00:08, 35.25it/s] Loading 0: 19%|█▉ | 69/363 [00:02<00:08, 34.50it/s] Loading 0: 21%|██ | 75/363 [00:02<00:08, 34.24it/s] Loading 0: 22%|██▏ | 80/363 [00:02<00:08, 32.49it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:07, 37.53it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:07, 37.23it/s] Loading 0: 27%|██▋ | 97/363 [00:02<00:07, 36.96it/s] Loading 0: 28%|██▊ | 101/363 [00:03<00:07, 36.52it/s] Loading 0: 29%|██▉ | 105/363 [00:03<00:07, 33.30it/s] Loading 0: 31%|███ | 112/363 [00:03<00:06, 41.30it/s] Loading 0: 32%|███▏ | 117/363 [00:03<00:09, 27.15it/s] Loading 0: 34%|███▎ | 122/363 [00:03<00:08, 28.84it/s] Loading 0: 35%|███▌ | 128/363 [00:03<00:07, 29.93it/s] Loading 0: 36%|███▋ | 132/363 [00:04<00:07, 30.23it/s] Loading 0: 38%|███▊ | 138/363 [00:04<00:07, 30.91it/s] Loading 0: 39%|███▉ | 143/363 [00:04<00:06, 31.56it/s] Loading 0: 41%|████ | 149/363 [00:04<00:06, 33.56it/s] Loading 0: 43%|████▎ | 155/363 [00:04<00:05, 39.04it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 37.63it/s] Loading 0: 45%|████▌ | 164/363 [00:04<00:05, 37.57it/s] Loading 0: 46%|████▋ | 168/363 [00:05<00:05, 35.12it/s] Loading 0: 48%|████▊ | 176/363 [00:05<00:04, 41.27it/s] Loading 0: 50%|████▉ | 181/363 [00:05<00:05, 34.87it/s] Loading 0: 51%|█████ | 185/363 [00:05<00:05, 33.85it/s] Loading 0: 53%|█████▎ | 191/363 [00:05<00:05, 33.62it/s] Loading 0: 54%|█████▎ | 195/363 [00:05<00:05, 32.71it/s] Loading 0: 55%|█████▌ | 200/363 [00:05<00:04, 36.28it/s] Loading 0: 56%|█████▌ | 204/363 [00:06<00:04, 35.52it/s] Loading 0: 57%|█████▋ | 208/363 [00:06<00:05, 30.10it/s] Loading 0: 58%|█████▊ | 212/363 [00:06<00:05, 27.52it/s] Loading 0: 60%|█████▉ | 217/363 [00:06<00:04, 31.12it/s] Loading 0: 61%|██████ | 222/363 [00:06<00:04, 34.53it/s] Loading 0: 62%|██████▏ | 226/363 [00:06<00:04, 28.35it/s] Loading 0: 63%|██████▎ | 230/363 [00:07<00:04, 28.06it/s] Loading 0: 66%|██████▌ | 239/363 [00:07<00:03, 37.27it/s] Loading 0: 67%|██████▋ | 243/363 [00:07<00:03, 31.35it/s] Loading 0: 68%|██████▊ | 248/363 [00:07<00:03, 33.45it/s] Loading 0: 70%|██████▉ | 254/363 [00:07<00:03, 35.10it/s] Loading 0: 71%|███████ | 258/363 [00:07<00:03, 34.07it/s] Loading 0: 72%|███████▏ | 263/363 [00:07<00:02, 37.39it/s] Loading 0: 74%|███████▎ | 267/363 [00:08<00:02, 37.74it/s] Loading 0: 75%|███████▍ | 271/363 [00:08<00:02, 33.08it/s] Loading 0: 76%|███████▌ | 275/363 [00:08<00:02, 31.77it/s] Loading 0: 78%|███████▊ | 282/363 [00:08<00:01, 40.85it/s] Loading 0: 79%|███████▉ | 287/363 [00:08<00:02, 36.50it/s] Loading 0: 80%|████████ | 291/363 [00:08<00:02, 35.90it/s] Loading 0: 81%|████████▏ | 295/363 [00:08<00:01, 35.40it/s] Loading 0: 83%|████████▎ | 302/363 [00:08<00:01, 37.85it/s] Loading 0: 84%|████████▍ | 306/363 [00:09<00:01, 28.87it/s] Loading 0: 86%|████████▌ | 311/363 [00:09<00:01, 28.30it/s] Loading 0: 87%|████████▋ | 316/363 [00:09<00:01, 32.55it/s] Loading 0: 88%|████████▊ | 320/363 [00:09<00:01, 26.22it/s] Loading 0: 90%|████████▉ | 326/363 [00:09<00:01, 32.49it/s] Loading 0: 91%|█████████ | 330/363 [00:09<00:00, 33.49it/s] Loading 0: 92%|█████████▏| 334/363 [00:10<00:00, 30.74it/s] Loading 0: 93%|█████████▎| 338/363 [00:10<00:00, 30.60it/s] Loading 0: 95%|█████████▍| 344/363 [00:10<00:00, 37.04it/s] Loading 0: 96%|█████████▌| 349/363 [00:10<00:00, 25.70it/s] Loading 0: 97%|█████████▋| 353/363 [00:10<00:00, 24.13it/s] Loading 0: 98%|█████████▊| 357/363 [00:10<00:00, 26.08it/s]
Job junhua024-chai-1-full-002-v13-mkmlizer completed after 147.75s with status: succeeded
Stopping job with name junhua024-chai-1-full-002-v13-mkmlizer
Pipeline stage MKMLizer completed in 148.40s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service junhua024-chai-1-full-002-v13
Waiting for inference service junhua024-chai-1-full-002-v13 to be ready
Inference service junhua024-chai-1-full-002-v13 ready after 180.88392686843872s
Pipeline stage MKMLDeployer completed in 181.46s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.299947738647461s
Received healthy response to inference request in 1.9567601680755615s
Received healthy response to inference request in 1.966935157775879s
Received healthy response to inference request in 1.4713501930236816s
Received healthy response to inference request in 1.5496995449066162s
5 requests
0 failed requests
5th percentile: 1.4870200634002686
10th percentile: 1.5026899337768556
20th percentile: 1.5340296745300293
30th percentile: 1.6311116695404053
40th percentile: 1.7939359188079835
50th percentile: 1.9567601680755615
60th percentile: 1.9608301639556884
70th percentile: 1.9649001598358153
80th percentile: 2.0335376739501956
90th percentile: 2.166742706298828
95th percentile: 2.2333452224731443
99th percentile: 2.2866272354125976
mean time: 1.84893856048584
Pipeline stage StressChecker completed in 10.80s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.70s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.74s
Shutdown handler de-registered
junhua024-chai-1-full-002_v13 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.18s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service junhua024-chai-1-full-002-v13-profiler
Waiting for inference service junhua024-chai-1-full-002-v13-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 4970.62s
Shutdown handler de-registered
junhua024-chai-1-full-002_v13 status is now inactive due to auto deactivation removed underperforming models
junhua024-chai-1-full-002_v13 status is now torndown due to DeploymentManager action