developer_uid: junhua024
submission_id: junhua024-chai-06-full_30622_v18
model_name: junhua024-chai-06-full_30622_v18
model_group: junhua024/chai_06_full_0
status: torndown
timestamp: 2025-07-18T15:58:18+00:00
num_battles: 6499
num_wins: 3121
celo_rating: 1281.78
family_friendly_score: 0.5582
family_friendly_standard_error: 0.007023001637476671
submission_type: basic
model_repo: junhua024/chai_06_full_02102_1925
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5920539266644831, 'latency_mean': 1.6889315485954284, 'latency_p50': 1.6913208961486816, 'latency_p90': 1.8527734518051147}, {'batch_size': 3, 'throughput': 1.063335244722014, 'latency_mean': 2.8097171008586885, 'latency_p50': 2.7962719202041626, 'latency_p90': 3.083826947212219}, {'batch_size': 5, 'throughput': 1.269233014762142, 'latency_mean': 3.9144125819206237, 'latency_p50': 3.9225761890411377, 'latency_p90': 4.415100073814392}, {'batch_size': 6, 'throughput': 1.3350201132828243, 'latency_mean': 4.466622748374939, 'latency_p50': 4.441435098648071, 'latency_p90': 4.990184640884399}, {'batch_size': 8, 'throughput': 1.3919501201590014, 'latency_mean': 5.703771592378616, 'latency_p50': 5.746863007545471, 'latency_p90': 6.400109148025512}, {'batch_size': 10, 'throughput': 1.4259293353332498, 'latency_mean': 6.947304291725159, 'latency_p50': 6.94221293926239, 'latency_p90': 7.837683153152465}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: junhua024-chai-06-full_30622_v18
is_internal_developer: False
language_model: junhua024/chai_06_full_02102_1925
model_size: 13B
ranking_group: single
throughput_3p7s: 1.25
us_pacific_date: 2025-07-18
win_ratio: 0.4802277273426681
generation_params: {'temperature': 1.0, 'top_p': 0.88, 'min_p': 0.0, 'top_k': 10, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name junhua024-chai-06-full-30622-v18-mkmlizer
Waiting for job on junhua024-chai-06-full-30622-v18-mkmlizer to finish
Failed to get response for submission chaiml-bat-boys-azeril-_87348_v1: ('http://chaiml-bat-boys-azeril-87348-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com/v1/models/GPT-J-6B-lit-v2:predict', '')
junhua024-chai-06-full-30622-v18-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ Version: 0.29.15 ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ https://mk1.ai ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ The license key for the current software has been verified as ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ belonging to: ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ Chai Research Corp. ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
junhua024-chai-06-full-30622-v18-mkmlizer: ║ ║
junhua024-chai-06-full-30622-v18-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
junhua024-chai-06-full-30622-v18-mkmlizer: Downloaded to shared memory in 77.996s
junhua024-chai-06-full-30622-v18-mkmlizer: Checking if junhua024/chai_06_full_02102_1925 already exists in ChaiML
junhua024-chai-06-full-30622-v18-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpkiben_u3, device:0
junhua024-chai-06-full-30622-v18-mkmlizer: Saving flywheel model at /dev/shm/model_cache
junhua024-chai-06-full-30622-v18-mkmlizer: quantized model in 31.617s
junhua024-chai-06-full-30622-v18-mkmlizer: Processed model junhua024/chai_06_full_02102_1925 in 109.705s
junhua024-chai-06-full-30622-v18-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
junhua024-chai-06-full-30622-v18-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/junhua024-chai-06-full-30622-v18/nvidia
junhua024-chai-06-full-30622-v18-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/junhua024-chai-06-full-30622-v18/nvidia/config.json
junhua024-chai-06-full-30622-v18-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/junhua024-chai-06-full-30622-v18/nvidia/special_tokens_map.json
junhua024-chai-06-full-30622-v18-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/junhua024-chai-06-full-30622-v18/nvidia/tokenizer_config.json
junhua024-chai-06-full-30622-v18-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/junhua024-chai-06-full-30622-v18/nvidia/tokenizer.json
junhua024-chai-06-full-30622-v18-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/junhua024-chai-06-full-30622-v18/nvidia/flywheel_model.0.safetensors
junhua024-chai-06-full-30622-v18-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%| | 2/363 [00:00<00:24, 14.86it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:20, 17.12it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:12, 27.84it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:11, 29.57it/s] Loading 0: 6%|▋ | 23/363 [00:00<00:10, 31.91it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:07, 45.64it/s] Loading 0: 10%|█ | 38/363 [00:01<00:08, 36.77it/s] Loading 0: 12%|█▏ | 43/363 [00:01<00:09, 35.46it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:08, 39.04it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:09, 33.43it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:09, 32.32it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:08, 34.13it/s] Loading 0: 19%|█▉ | 69/363 [00:02<00:08, 32.98it/s] Loading 0: 20%|██ | 74/363 [00:02<00:07, 36.47it/s] Loading 0: 21%|██▏ | 78/363 [00:02<00:07, 36.50it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 31.76it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:08, 33.61it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:07, 35.24it/s] Loading 0: 27%|██▋ | 97/363 [00:02<00:07, 36.53it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:07, 36.07it/s] Loading 0: 29%|██▉ | 105/363 [00:03<00:07, 33.30it/s] Loading 0: 31%|███ | 113/363 [00:03<00:06, 40.65it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:07, 33.19it/s] Loading 0: 34%|███▎ | 122/363 [00:03<00:07, 32.34it/s] Loading 0: 35%|███▌ | 128/363 [00:03<00:06, 34.48it/s] Loading 0: 36%|███▋ | 132/363 [00:03<00:06, 33.03it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:06, 36.33it/s] Loading 0: 39%|███▉ | 141/363 [00:04<00:06, 36.76it/s] Loading 0: 40%|███▉ | 145/363 [00:04<00:06, 32.85it/s] Loading 0: 41%|████ | 149/363 [00:04<00:06, 30.94it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:05, 39.95it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 36.65it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 36.68it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 36.56it/s] Loading 0: 48%|████▊ | 176/363 [00:05<00:04, 42.00it/s] Loading 0: 50%|████▉ | 181/363 [00:05<00:05, 34.03it/s] Loading 0: 51%|█████ | 185/363 [00:05<00:05, 33.10it/s] Loading 0: 53%|█████▎ | 191/363 [00:05<00:04, 35.33it/s] Loading 0: 54%|█████▎ | 195/363 [00:05<00:04, 34.30it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 33.81it/s] Loading 0: 57%|█████▋ | 206/363 [00:05<00:04, 33.31it/s] Loading 0: 58%|█████▊ | 212/363 [00:06<00:04, 33.45it/s] Loading 0: 60%|██████ | 218/363 [00:06<00:03, 38.32it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:03, 36.82it/s] Loading 0: 63%|██████▎ | 227/363 [00:06<00:03, 35.89it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 32.26it/s] Loading 0: 66%|██████▌ | 239/363 [00:06<00:03, 38.38it/s] Loading 0: 67%|██████▋ | 243/363 [00:07<00:04, 29.91it/s] Loading 0: 68%|██████▊ | 248/363 [00:07<00:03, 31.77it/s] Loading 0: 70%|██████▉ | 254/363 [00:07<00:03, 33.36it/s] Loading 0: 71%|███████ | 258/363 [00:07<00:03, 31.75it/s] Loading 0: 72%|███████▏ | 263/363 [00:07<00:02, 35.07it/s] Loading 0: 74%|███████▎ | 267/363 [00:07<00:02, 35.39it/s] Loading 0: 75%|███████▍ | 271/363 [00:07<00:02, 31.17it/s] Loading 0: 76%|███████▌ | 275/363 [00:08<00:02, 29.61it/s] Loading 0: 77%|███████▋ | 281/363 [00:08<00:02, 36.11it/s] Loading 0: 79%|███████▉ | 286/363 [00:08<00:02, 33.03it/s] Loading 0: 80%|███████▉ | 290/363 [00:08<00:02, 32.85it/s] Loading 0: 81%|████████ | 294/363 [00:08<00:02, 30.64it/s] Loading 0: 83%|████████▎ | 300/363 [00:08<00:01, 37.32it/s] Loading 0: 84%|████████▍ | 305/363 [00:08<00:01, 32.18it/s] Loading 0: 85%|████████▌ | 309/363 [00:09<00:01, 32.12it/s] Loading 0: 86%|████████▌ | 313/363 [00:09<00:01, 32.27it/s] Loading 0: 87%|████████▋ | 317/363 [00:09<00:01, 30.13it/s] Loading 0: 88%|████████▊ | 321/363 [00:09<00:01, 29.92it/s] Loading 0: 90%|█████████ | 327/363 [00:09<00:01, 31.88it/s] Loading 0: 91%|█████████▏| 332/363 [00:09<00:00, 32.57it/s] Loading 0: 93%|█████████▎| 338/363 [00:09<00:00, 33.63it/s] Loading 0: 95%|█████████▍| 344/363 [00:10<00:00, 39.04it/s] Loading 0: 96%|█████████▌| 349/363 [00:10<00:00, 26.07it/s] Loading 0: 97%|█████████▋| 353/363 [00:10<00:00, 23.84it/s] Loading 0: 98%|█████████▊| 357/363 [00:10<00:00, 25.19it/s]
Job junhua024-chai-06-full-30622-v18-mkmlizer completed after 325.06s with status: succeeded
Stopping job with name junhua024-chai-06-full-30622-v18-mkmlizer
Pipeline stage MKMLizer completed in 325.57s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.18s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service junhua024-chai-06-full-30622-v18
Waiting for inference service junhua024-chai-06-full-30622-v18 to be ready
Failed to get response for submission chaiml-simon-ghost-rile_65921_v1: HTTPConnectionPool(host='chaiml-simon-ghost-rile-65921-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission chaiml-isaac-brown-sylu_53639_v2: HTTPConnectionPool(host='chaiml-isaac-brown-sylu-53639-v2-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission chaiml-isaac-brown-sylu_53639_v2: HTTPConnectionPool(host='chaiml-isaac-brown-sylu-53639-v2-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Inference service junhua024-chai-06-full-30622-v18 ready after 311.46333742141724s
Pipeline stage MKMLDeployer completed in 312.09s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.4849917888641357s
Received healthy response to inference request in 1.9153387546539307s
Received healthy response to inference request in 1.6270978450775146s
Received healthy response to inference request in 1.958251953125s
Received healthy response to inference request in 2.074840784072876s
5 requests
0 failed requests
5th percentile: 1.6847460269927979
10th percentile: 1.742394208908081
20th percentile: 1.8576905727386475
30th percentile: 1.9239213943481446
40th percentile: 1.9410866737365722
50th percentile: 1.958251953125
60th percentile: 2.0048874855041503
70th percentile: 2.0515230178833006
80th percentile: 2.156870985031128
90th percentile: 2.320931386947632
95th percentile: 2.402961587905884
99th percentile: 2.4685857486724854
mean time: 2.0121042251586916
Pipeline stage StressChecker completed in 11.86s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.82s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.88s
Shutdown handler de-registered
junhua024-chai-06-full_30622_v18 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service junhua024-chai-06-full-30622-v18-profiler
Waiting for inference service junhua024-chai-06-full-30622-v18-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2792.76s
Shutdown handler de-registered
junhua024-chai-06-full_30622_v18 status is now inactive due to auto deactivation removed underperforming models
junhua024-chai-06-full_30622_v18 status is now torndown due to DeploymentManager action
junhua024-chai-06-full_30622_v18 status is now torndown due to DeploymentManager action