run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name jic062-nemo-v1-1-v3-mkmlizer
Waiting for job on jic062-nemo-v1-1-v3-mkmlizer to finish
jic062-nemo-v1-1-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jic062-nemo-v1-1-v3-mkmlizer: ║ _____ __ __ ║
jic062-nemo-v1-1-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jic062-nemo-v1-1-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jic062-nemo-v1-1-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jic062-nemo-v1-1-v3-mkmlizer: ║ /___/ ║
jic062-nemo-v1-1-v3-mkmlizer: ║ ║
jic062-nemo-v1-1-v3-mkmlizer: ║ Version: 0.10.1 ║
jic062-nemo-v1-1-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jic062-nemo-v1-1-v3-mkmlizer: ║ https://mk1.ai ║
jic062-nemo-v1-1-v3-mkmlizer: ║ ║
jic062-nemo-v1-1-v3-mkmlizer: ║ The license key for the current software has been verified as ║
jic062-nemo-v1-1-v3-mkmlizer: ║ belonging to: ║
jic062-nemo-v1-1-v3-mkmlizer: ║ ║
jic062-nemo-v1-1-v3-mkmlizer: ║ Chai Research Corp. ║
jic062-nemo-v1-1-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jic062-nemo-v1-1-v3-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
jic062-nemo-v1-1-v3-mkmlizer: ║ ║
jic062-nemo-v1-1-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
jic062-nemo-v1-1-v3-mkmlizer: Downloaded to shared memory in 40.068s
jic062-nemo-v1-1-v3-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpzw1_0k2d, device:0
jic062-nemo-v1-1-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
jic062-nemo-v1-1-v3-mkmlizer: quantized model in 35.739s
jic062-nemo-v1-1-v3-mkmlizer: Processed model jic062/Nemo-v1.1 in 75.808s
jic062-nemo-v1-1-v3-mkmlizer: creating bucket guanaco-mkml-models
jic062-nemo-v1-1-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jic062-nemo-v1-1-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jic062-nemo-v1-1-v3
jic062-nemo-v1-1-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jic062-nemo-v1-1-v3/tokenizer_config.json
jic062-nemo-v1-1-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jic062-nemo-v1-1-v3/tokenizer.json
jic062-nemo-v1-1-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jic062-nemo-v1-1-v3/flywheel_model.0.safetensors
jic062-nemo-v1-1-v3-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%|▏ | 5/363 [00:00<00:10, 35.38it/s]
Loading 0: 4%|▎ | 13/363 [00:00<00:06, 56.68it/s]
Loading 0: 5%|▌ | 19/363 [00:00<00:07, 46.01it/s]
Loading 0: 7%|▋ | 24/363 [00:00<00:07, 44.11it/s]
Loading 0: 9%|▊ | 31/363 [00:00<00:06, 49.13it/s]
Loading 0: 10%|█ | 37/363 [00:00<00:07, 46.26it/s]
Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 44.04it/s]
Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 49.46it/s]
Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 45.18it/s]
Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 46.19it/s]
Loading 0: 18%|█▊ | 65/363 [00:01<00:09, 31.90it/s]
Loading 0: 20%|█▉ | 71/363 [00:01<00:07, 37.19it/s]
Loading 0: 21%|██ | 76/363 [00:01<00:07, 38.88it/s]
Loading 0: 23%|██▎ | 82/363 [00:01<00:07, 37.11it/s]
Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 44.85it/s]
Loading 0: 26%|██▌ | 95/363 [00:02<00:05, 44.89it/s]
Loading 0: 28%|██▊ | 100/363 [00:02<00:07, 36.68it/s]
Loading 0: 29%|██▉ | 106/363 [00:02<00:06, 41.65it/s]
Loading 0: 31%|███ | 112/363 [00:02<00:05, 44.53it/s]
Loading 0: 32%|███▏ | 117/363 [00:02<00:05, 42.45it/s]
Loading 0: 34%|███▍ | 123/363 [00:02<00:05, 41.93it/s]
Loading 0: 35%|███▌ | 128/363 [00:03<00:05, 41.49it/s]
Loading 0: 37%|███▋ | 135/363 [00:03<00:04, 46.37it/s]
Loading 0: 39%|███▊ | 140/363 [00:03<00:04, 46.81it/s]
Loading 0: 40%|███▉ | 145/363 [00:03<00:07, 28.14it/s]
Loading 0: 41%|████ | 149/363 [00:03<00:07, 27.66it/s]
Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 34.75it/s]
Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 36.90it/s]
Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 39.73it/s]
Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 39.56it/s]
Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 38.11it/s]
Loading 0: 50%|█████ | 183/363 [00:04<00:04, 42.78it/s]
Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 43.74it/s]
Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 44.47it/s]
Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 43.64it/s]
Loading 0: 56%|█████▌ | 204/363 [00:04<00:03, 41.36it/s]
Loading 0: 58%|█████▊ | 211/363 [00:05<00:03, 46.03it/s]
Loading 0: 60%|█████▉ | 216/363 [00:05<00:03, 46.95it/s]
Loading 0: 61%|██████ | 221/363 [00:05<00:03, 46.40it/s]
Loading 0: 62%|██████▏ | 226/363 [00:05<00:04, 29.95it/s]
Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 30.27it/s]
Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 37.13it/s]
Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 38.53it/s]
Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 40.81it/s]
Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 41.43it/s]
Loading 0: 71%|███████ | 258/363 [00:06<00:02, 41.18it/s]
Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 45.45it/s]
Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 43.81it/s]
Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 43.55it/s]
Loading 0: 77%|███████▋ | 280/363 [00:06<00:01, 43.27it/s]
Loading 0: 79%|███████▊ | 285/363 [00:06<00:01, 41.92it/s]
Loading 0: 80%|████████ | 291/363 [00:07<00:01, 45.09it/s]
Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 43.98it/s]
Loading 0: 83%|████████▎ | 303/363 [00:07<00:01, 44.65it/s]
Loading 0: 85%|████████▍ | 308/363 [00:14<00:20, 2.63it/s]
Loading 0: 86%|████████▌ | 312/363 [00:14<00:15, 3.35it/s]
Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.43it/s]
Loading 0: 90%|████████▉ | 325/363 [00:14<00:05, 7.04it/s]
Loading 0: 91%|█████████ | 330/363 [00:14<00:03, 8.80it/s]
Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.32it/s]
Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 16.57it/s]
Loading 0: 96%|█████████▌| 349/363 [00:15<00:00, 19.61it/s]
Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 25.69it/s]
Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 28.79it/s]
Job jic062-nemo-v1-1-v3-mkmlizer completed after 94.33s with status: succeeded
Stopping job with name jic062-nemo-v1-1-v3-mkmlizer
Pipeline stage MKMLizer completed in 95.58s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service jic062-nemo-v1-1-v3
Waiting for inference service jic062-nemo-v1-1-v3 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service jic062-nemo-v1-1-v3 ready after 151.09704685211182s
Pipeline stage MKMLDeployer completed in 151.56s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.8139162063598633s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Received healthy response to inference request in 1.7988629341125488s
Received healthy response to inference request in 2.092789888381958s
Received healthy response to inference request in 2.2674026489257812s
Received healthy response to inference request in 2.06801438331604s
5 requests
0 failed requests
5th percentile: 1.852693223953247
10th percentile: 1.9065235137939454
20th percentile: 2.014184093475342
30th percentile: 2.0729694843292235
40th percentile: 2.0828796863555907
50th percentile: 2.092789888381958
60th percentile: 2.162634992599487
70th percentile: 2.2324800968170164
80th percentile: 2.376705360412598
90th percentile: 2.5953107833862306
95th percentile: 2.7046134948730467
99th percentile: 2.7920556640625
mean time: 2.2081972122192384
Pipeline stage StressChecker completed in 12.16s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
starting trigger_guanaco_pipeline %s
Pipeline stage TriggerMKMLProfilingPipeline completed in 4.54s
jic062-nemo-v1-1_v3 status is now deployed due to DeploymentManager action
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service jic062-nemo-v1-1-v3-profiler
Waiting for inference service jic062-nemo-v1-1-v3-profiler to be ready
Inference service jic062-nemo-v1-1-v3-profiler ready after 140.47655153274536s
Pipeline stage MKMLProfilerDeployer completed in 140.96s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/jic062-nemo-v1-1-v3-profiler-predictor-00001-deployment-57f9bkq:/code/chaiverse_profiler_1725393557 --namespace tenant-chaiml-guanaco
kubectl exec -it jic062-nemo-v1-1-v3-profiler-predictor-00001-deployment-57f9bkq --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1725393557 && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1725393557/summary.json'
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service jic062-nemo-v1-1-v3-profiler is running
Tearing down inference service jic062-nemo-v1-1-v3-profiler
Service jic062-nemo-v1-1-v3-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.54s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service jic062-nemo-v1-1-v3-profiler
Waiting for inference service jic062-nemo-v1-1-v3-profiler to be ready
Inference service jic062-nemo-v1-1-v3-profiler ready after 60.15718674659729s
Pipeline stage MKMLProfilerDeployer completed in 60.55s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/jic062-nemo-v1-1-v3-profiler-predictor-00001-deployment-57f9bkq:/code/chaiverse_profiler_1725395518 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/jic062-nemo-v1-1-v3-profiler-predictor-00001-deployment-57f9bkq:/code/chaiverse_profiler_1725395521 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/jic062-nemo-v1-1-v3-profiler-predictor-00001-deployment-57f9bkq:/code/chaiverse_profiler_1725395521 --namespace tenant-chaiml-guanaco
clean up pipeline due to error=%s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service jic062-nemo-v1-1-v3-profiler is running
Tearing down inference service jic062-nemo-v1-1-v3-profiler
Service jic062-nemo-v1-1-v3-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.56s
jic062-nemo-v1-1_v3 status is now inactive due to auto deactivation removed underperforming models
jic062-nemo-v1-1_v3 status is now torndown due to DeploymentManager action