submission_id: jic062-dpo-v1-6-nemo_v1
developer_uid: chace9580
best_of: 8
celo_rating: 1253.2
display_name: jic062-dpo-v1-6-nemo_v1
family_friendly_score: 0.0
formatter: {'memory_template': '[INST]system\n{memory}[/INST]\n', 'prompt_template': '[INST]user\n{prompt}[/INST]\n', 'bot_template': '[INST]assistant\n{bot_name}: {message}[/INST]\n', 'user_template': '[INST]user\n{user_name}: {message}[/INST]\n', 'response_template': '[INST]assistant\n{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 0.9, 'min_p': 0.05, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '/s', '[/INST]'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
gpu_counts: {'NVIDIA RTX A5000': 1}
is_internal_developer: False
language_model: jic062/dpo-v1.6-Nemo
latencies: [{'batch_size': 1, 'throughput': 0.6203834081916346, 'latency_mean': 1.611844948530197, 'latency_p50': 1.6066184043884277, 'latency_p90': 1.7817476749420167}, {'batch_size': 3, 'throughput': 1.0929741411432543, 'latency_mean': 2.736880428791046, 'latency_p50': 2.7292484045028687, 'latency_p90': 2.989917540550232}, {'batch_size': 5, 'throughput': 1.2452591988681587, 'latency_mean': 3.999237231016159, 'latency_p50': 3.9864262342453003, 'latency_p90': 4.472228002548218}, {'batch_size': 6, 'throughput': 1.2788207885327445, 'latency_mean': 4.676178019046784, 'latency_p50': 4.670867085456848, 'latency_p90': 5.2569026231765745}, {'batch_size': 8, 'throughput': 1.2683014901958298, 'latency_mean': 6.262004603147506, 'latency_p50': 6.271590828895569, 'latency_p90': 7.220349287986755}, {'batch_size': 10, 'throughput': 1.2271995951061516, 'latency_mean': 8.105116794109344, 'latency_p50': 8.14585566520691, 'latency_p90': 9.128522539138794}]
max_input_tokens: 1024
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_group: jic062/dpo-v1.6-Nemo
model_name: jic062-dpo-v1-6-nemo_v1
model_num_parameters: 12772070400.0
model_repo: jic062/dpo-v1.6-Nemo
model_size: 13B
num_battles: 261753
num_wins: 133175
ranking_group: single
status: torndown
submission_type: basic
throughput_3p7s: 1.22
timestamp: 2024-09-22T00:22:58+00:00
us_pacific_date: 2024-09-21
win_ratio: 0.5087811792032947
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name jic062-dpo-v1-6-nemo-v1-mkmlizer
Waiting for job on jic062-dpo-v1-6-nemo-v1-mkmlizer to finish
jic062-dpo-v1-6-nemo-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ _____ __ __ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ /___/ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ Version: 0.10.1 ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ https://mk1.ai ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ The license key for the current software has been verified as ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ belonging to: ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ Chai Research Corp. ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ║ ║
jic062-dpo-v1-6-nemo-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
jic062-dpo-v1-6-nemo-v1-mkmlizer: Downloaded to shared memory in 47.838s
jic062-dpo-v1-6-nemo-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpgfi764jg, device:0
jic062-dpo-v1-6-nemo-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
jic062-dpo-v1-6-nemo-v1-mkmlizer: quantized model in 35.478s
jic062-dpo-v1-6-nemo-v1-mkmlizer: Processed model jic062/dpo-v1.6-Nemo in 83.316s
jic062-dpo-v1-6-nemo-v1-mkmlizer: creating bucket guanaco-mkml-models
jic062-dpo-v1-6-nemo-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jic062-dpo-v1-6-nemo-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jic062-dpo-v1-6-nemo-v1
jic062-dpo-v1-6-nemo-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/jic062-dpo-v1-6-nemo-v1/config.json
jic062-dpo-v1-6-nemo-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/jic062-dpo-v1-6-nemo-v1/special_tokens_map.json
jic062-dpo-v1-6-nemo-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jic062-dpo-v1-6-nemo-v1/tokenizer_config.json
jic062-dpo-v1-6-nemo-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jic062-dpo-v1-6-nemo-v1/tokenizer.json
jic062-dpo-v1-6-nemo-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jic062-dpo-v1-6-nemo-v1/flywheel_model.0.safetensors
jic062-dpo-v1-6-nemo-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 32.27it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 53.85it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 46.21it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 44.10it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 51.13it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 45.61it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 44.22it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 50.10it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 44.57it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 33.82it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:08, 33.15it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.13it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 40.71it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 40.25it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:05, 45.75it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 43.87it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:06, 41.33it/s] Loading 0: 29%|██▉ | 107/363 [00:02<00:05, 45.59it/s] Loading 0: 31%|███ | 113/363 [00:02<00:06, 40.96it/s] Loading 0: 33%|███▎ | 118/363 [00:02<00:06, 39.60it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:05, 47.24it/s] Loading 0: 36%|███▋ | 132/363 [00:03<00:05, 44.63it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:05, 40.90it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:07, 30.47it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 31.59it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 31.79it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 37.81it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 40.23it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 41.82it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 42.60it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 42.55it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:03, 47.85it/s] Loading 0: 52%|█████▏ | 190/363 [00:04<00:03, 46.33it/s] Loading 0: 54%|█████▎ | 195/363 [00:04<00:03, 43.77it/s] Loading 0: 56%|█████▌ | 202/363 [00:04<00:03, 48.99it/s] Loading 0: 57%|█████▋ | 208/363 [00:04<00:03, 43.45it/s] Loading 0: 59%|█████▊ | 213/363 [00:05<00:03, 43.09it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:02, 49.66it/s] Loading 0: 62%|██████▏ | 226/363 [00:05<00:04, 31.82it/s] Loading 0: 64%|██████▎ | 231/363 [00:05<00:04, 32.88it/s] Loading 0: 66%|██████▌ | 238/363 [00:05<00:03, 38.76it/s] Loading 0: 67%|██████▋ | 244/363 [00:05<00:02, 40.32it/s] Loading 0: 69%|██████▊ | 249/363 [00:06<00:02, 41.07it/s] Loading 0: 71%|███████ | 256/363 [00:06<00:02, 46.36it/s] Loading 0: 72%|███████▏ | 262/363 [00:06<00:02, 45.35it/s] Loading 0: 74%|███████▎ | 267/363 [00:06<00:02, 42.70it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:01, 47.18it/s] Loading 0: 77%|███████▋ | 280/363 [00:06<00:01, 45.74it/s] Loading 0: 79%|███████▊ | 285/363 [00:06<00:01, 43.32it/s] Loading 0: 80%|████████ | 292/363 [00:06<00:01, 47.52it/s] Loading 0: 82%|████████▏ | 298/363 [00:07<00:01, 46.57it/s] Loading 0: 84%|████████▎ | 304/363 [00:13<00:20, 2.85it/s] Loading 0: 85%|████████▍ | 308/363 [00:13<00:15, 3.57it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:11, 4.54it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:05, 7.35it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:03, 9.87it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:02, 12.42it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 17.33it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:00, 20.53it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 23.80it/s] Loading 0: 98%|█████████▊| 356/363 [00:14<00:00, 30.44it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 33.14it/s]
Job jic062-dpo-v1-6-nemo-v1-mkmlizer completed after 102.94s with status: succeeded
Stopping job with name jic062-dpo-v1-6-nemo-v1-mkmlizer
Pipeline stage MKMLizer completed in 103.80s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service jic062-dpo-v1-6-nemo-v1
Waiting for inference service jic062-dpo-v1-6-nemo-v1 to be ready
Inference service jic062-dpo-v1-6-nemo-v1 ready after 200.4720003604889s
Pipeline stage MKMLDeployer completed in 200.81s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.607429265975952s
Received healthy response to inference request in 1.8262779712677002s
Received healthy response to inference request in 1.775345802307129s
Received healthy response to inference request in 2.157881498336792s
Received healthy response to inference request in 2.2170915603637695s
5 requests
0 failed requests
5th percentile: 1.7855322360992432
10th percentile: 1.7957186698913574
20th percentile: 1.816091537475586
30th percentile: 1.8925986766815186
40th percentile: 2.025240087509155
50th percentile: 2.157881498336792
60th percentile: 2.181565523147583
70th percentile: 2.205249547958374
80th percentile: 2.295159101486206
90th percentile: 2.451294183731079
95th percentile: 2.5293617248535156
99th percentile: 2.5918157577514647
mean time: 2.1168052196502685
Pipeline stage StressChecker completed in 11.53s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 4.46s
Shutdown handler de-registered
jic062-dpo-v1-6-nemo_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service jic062-dpo-v1-6-nemo-v1-profiler
Waiting for inference service jic062-dpo-v1-6-nemo-v1-profiler to be ready
Inference service jic062-dpo-v1-6-nemo-v1-profiler ready after 190.484375s
Pipeline stage MKMLProfilerDeployer completed in 190.84s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/jic062-dpo-v1-6-nemo-v1-profiler-predictor-00001-deploymen4d69g:/code/chaiverse_profiler_1726965132 --namespace tenant-chaiml-guanaco
kubectl exec -it jic062-dpo-v1-6-nemo-v1-profiler-predictor-00001-deploymen4d69g --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1726965132 && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 64 --summary /code/chaiverse_profiler_1726965132/summary.json'
kubectl exec -it jic062-dpo-v1-6-nemo-v1-profiler-predictor-00001-deploymen4d69g --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1726965132/summary.json'
Pipeline stage MKMLProfilerRunner completed in 1148.25s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service jic062-dpo-v1-6-nemo-v1-profiler is running
Tearing down inference service jic062-dpo-v1-6-nemo-v1-profiler
Service jic062-dpo-v1-6-nemo-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.04s
Shutdown handler de-registered
jic062-dpo-v1-6-nemo_v1 status is now inactive due to auto deactivation removed underperforming models
Checking if service jellywibble-mistralsmall-4077-v2 is running
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline stage %s
admin requested tearing down of jic062-dpo-v1-6-nemo_v1
run pipeline %s
Running pipeline stage MKMLDeleter
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline stage %s
admin requested tearing down of mistralai-mistral-small_5341_v24
Checking if service jellywibble-mistralsmall-8515-v1 is running
run pipeline %s
Running pipeline stage MKMLDeleter
Shutdown handler not registered because Python interpreter is not running in the main thread
admin requested tearing down of riverise-mistral-0920-7872_v1
run pipeline stage %s
run pipeline %s
Checking if service jellywibble-mistralsmall-v1 is running
Shutdown handler not registered because Python interpreter is not running in the main thread
Running pipeline stage MKMLDeleter
Tearing down inference service jellywibble-mistralsmall-4077-v2
run pipeline stage %s
run pipeline %s
Tearing down inference service jellywibble-mistralsmall-8515-v1
Checking if service jic062-dpo-v1-6-nemo-v1 is running
Running pipeline stage MKMLDeleter
Service jellywibble-mistralsmall-4077-v2 has been torndown
run pipeline stage %s
Service jellywibble-mistralsmall-8515-v1 has been torndown
Checking if service mistralai-mistral-small-5341-v24 is running
Pipeline stage MKMLDeleter completed in 3.25s
Running pipeline stage MKMLDeleter
Pipeline stage MKMLDeleter completed in 2.93s
run pipeline stage %s
Tearing down inference service jellywibble-mistralsmall-v1
Checking if service riverise-mistral-0920-7872-v1 is running
run pipeline stage %s
Running pipeline stage MKMLModelDeleter
Service jellywibble-mistralsmall-v1 has been torndown
Running pipeline stage MKMLModelDeleter
Tearing down inference service jic062-dpo-v1-6-nemo-v1
Cleaning model data from S3
Tearing down inference service mistralai-mistral-small-5341-v24
Pipeline stage MKMLDeleter completed in 3.79s
Cleaning model data from S3
Cleaning model data from model cache
Service jic062-dpo-v1-6-nemo-v1 has been torndown
Tearing down inference service riverise-mistral-0920-7872-v1
run pipeline stage %s
Cleaning model data from model cache
Service mistralai-mistral-small-5341-v24 has been torndown
Pipeline stage MKMLDeleter completed in 4.49s
Deleting key jellywibble-mistralsmall-4077-v2/config.json from bucket guanaco-mkml-models
Running pipeline stage MKMLModelDeleter
Deleting key jellywibble-mistralsmall-8515-v1/config.json from bucket guanaco-mkml-models
Pipeline stage MKMLDeleter completed in 3.77s
Service riverise-mistral-0920-7872-v1 has been torndown
run pipeline stage %s
Deleting key jellywibble-mistralsmall-4077-v2/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Cleaning model data from S3
Deleting key jellywibble-mistralsmall-8515-v1/flywheel_model.0.safetensors from bucket guanaco-mkml-models
run pipeline stage %s
Pipeline stage MKMLDeleter completed in 3.94s
Running pipeline stage MKMLModelDeleter
Cleaning model data from model cache
Running pipeline stage MKMLModelDeleter
run pipeline stage %s
Cleaning model data from S3
Deleting key jellywibble-mistralsmall-v1/config.json from bucket guanaco-mkml-models
Cleaning model data from S3
Running pipeline stage MKMLModelDeleter
Cleaning model data from model cache
Deleting key jellywibble-mistralsmall-v1/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key jellywibble-mistralsmall-4077-v2/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Cleaning model data from S3
Deleting key jellywibble-mistralsmall-8515-v1/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Deleting key jic062-dpo-v1-6-nemo-v1/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-small-5341-v24/config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key jic062-dpo-v1-6-nemo-v1/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mistral-small-5341-v24/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-4077-v2/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key riverise-mistral-0920-7872-v1/config.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-8515-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-v1/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-4077-v2/tokenizer.json from bucket guanaco-mkml-models
Deleting key riverise-mistral-0920-7872-v1/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-8515-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-4077-v2/tokenizer_config.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-8515-v1/tokenizer_config.json from bucket guanaco-mkml-models
Deleting key jic062-dpo-v1-6-nemo-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-v1/special_tokens_map.json from bucket guanaco-mkml-models
Pipeline stage MKMLModelDeleter completed in 6.73s
Deleting key mistralai-mistral-small-5341-v24/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Pipeline stage MKMLModelDeleter completed in 6.74s
Deleting key jic062-dpo-v1-6-nemo-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-v1/tokenizer.json from bucket guanaco-mkml-models
Shutdown handler de-registered
Deleting key riverise-mistral-0920-7872-v1/special_tokens_map.json from bucket guanaco-mkml-models
Shutdown handler de-registered
Deleting key jic062-dpo-v1-6-nemo-v1/tokenizer_config.json from bucket guanaco-mkml-models
Deleting key jellywibble-mistralsmall-v1/tokenizer_config.json from bucket guanaco-mkml-models
jellywibble-mistralsmall_4077_v2 status is now torndown due to DeploymentManager action
Deleting key mistralai-mistral-small-5341-v24/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key riverise-mistral-0920-7872-v1/tokenizer.json from bucket guanaco-mkml-models
jellywibble-mistralsmall_8515_v1 status is now torndown due to DeploymentManager action
Pipeline stage MKMLModelDeleter completed in 5.23s
Pipeline stage MKMLModelDeleter completed in 6.29s
Deleting key mistralai-mistral-small-5341-v24/tokenizer.json from bucket guanaco-mkml-models
Deleting key riverise-mistral-0920-7872-v1/tokenizer_config.json from bucket guanaco-mkml-models
Shutdown handler de-registered
Shutdown handler de-registered
Deleting key mistralai-mistral-small-5341-v24/tokenizer.model from bucket guanaco-mkml-models
Shutdown handler de-registered
Deleting key mistralai-mistral-small-5341-v24/tokenizer.model from bucket guanaco-mkml-models
Pipeline stage MKMLModelDeleter completed in 5.13s
jic062-dpo-v1-6-nemo_v1 status is now torndown due to DeploymentManager action
jellywibble-mistralsmall_v1 status is now torndown due to DeploymentManager action
Deleting key mistralai-mistral-small-5341-v24/tokenizer_config.json from bucket guanaco-mkml-models