developer_uid: chai_backend_admin
submission_id: jellywibble-lora-120k-p_2801_v18
model_name: jellywibble-lora-120k-p_2801_v18
model_group: Jellywibble/lora_120k_pr
status: torndown
timestamp: 2024-07-15T17:59:00+00:00
num_battles: 515050
num_wins: 318903
celo_rating: 1306.8
family_friendly_score: 0.0
submission_type: basic
model_repo: Jellywibble/lora_120k_pref_data_ep3_stacked_elo_alignment
model_architecture: LlamaForCausalLM
reward_repo: ChaiML/gpt2_xl_pairwise_89m_step_347634
model_num_parameters: 8030261248.0
best_of: 16
max_input_tokens: 512
max_output_tokens: 96
display_name: jellywibble-lora-120k-p_2801_v18
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: Jellywibble/lora_120k_pref_data_ep3_stacked_elo_alignment
model_size: 8B
ranking_group: single
us_pacific_date: 2024-07-15
win_ratio: 0.6191690127172119
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.08, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '<|eot_id|>'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 96}
formatter: {'memory_template': "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{bot_name}'s Persona: {memory}\n\n", 'prompt_template': '{prompt}<|eot_id|>', 'bot_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}: {message}<|eot_id|>', 'user_template': '<|start_header_id|>user<|end_header_id|>\n\n{user_name}: {message}<|eot_id|>', 'response_template': '<|start_header_id|>system<|end_header_id|>\n\nrespond with intelligence<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': 'Bot: {message}\n', 'memory_template': '', 'prompt_template': '', 'response_template': 'Bot:', 'truncate_by_message': False, 'user_template': 'User: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name jellywibble-lora-120k-p-2801-v18-mkmlizer
Waiting for job on jellywibble-lora-120k-p-2801-v18-mkmlizer to finish
jellywibble-lora-120k-p-2801-v18-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ _____ __ __ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ /___/ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ Version: 0.9.5.post2 ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ https://mk1.ai ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ The license key for the current software has been verified as ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ belonging to: ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ Chai Research Corp. ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v18-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
jellywibble-lora-120k-p-2801-v18-mkmlizer: Downloaded to shared memory in 59.728s
jellywibble-lora-120k-p-2801-v18-mkmlizer: quantizing model to /dev/shm/model_cache
jellywibble-lora-120k-p-2801-v18-mkmlizer: Saving flywheel model at /dev/shm/model_cache
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.embed_tokens.weight torch.Size([139542528])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.0.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.0.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.0.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.0.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.0.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.0.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.1.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.1.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.1.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.1.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.1.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.1.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.2.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.2.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.2.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.2.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.2.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.2.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.3.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.3.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.3.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.10.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.10.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.10.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.10.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.10.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.10.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.11.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.11.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.11.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.11.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.11.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.11.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.12.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.12.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.12.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.12.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.12.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.12.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.13.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.13.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.13.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.13.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.13.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.13.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.14.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.14.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.8.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.8.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.8.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.9.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.9.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.9.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.9.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.9.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.9.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.14.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.14.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.14.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.14.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.15.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.15.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.15.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.15.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.15.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.15.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.16.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.16.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.16.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.16.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.16.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.16.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.17.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.17.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.17.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.17.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.17.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.17.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.18.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.18.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.18.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.18.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.18.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.18.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.19.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.19.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.19.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.19.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.19.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.19.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.20.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.20.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.20.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.20.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.20.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.20.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.21.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.21.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.21.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.21.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.21.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.21.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.22.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.22.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.22.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.22.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.22.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.22.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.23.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.23.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.23.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 0%| | 1/291 [00:00<00:09, 30.41it/s] Loading 0: 1%| | 2/291 [00:00<00:11, 25.71it/s] Loading 0: 1%|▏ | 4/291 [00:00<00:08, 34.17it/s] Loading 0: 1%|▏ | 4/291 [00:00<00:08, 34.17it/s] Loading 0: 2%|▏ | 5/291 [00:00<00:08, 34.17it/s] Loading 0: 2%|▏ | 7/291 [00:00<00:08, 34.17it/s] Loading 0: 3%|▎ | 9/291 [00:00<00:08, 34.17it/s] Loading 0: 3%|▎ | 10/291 [00:00<00:08, 34.17it/s] Loading 0: 4%|▍ | 11/291 [00:00<00:08, 34.17it/s] Loading 0: 4%|▍ | 12/291 [00:00<00:05, 54.26it/s] Loading 0: 4%|▍ | 13/291 [00:00<00:05, 54.26it/s] Loading 0: 5%|▍ | 14/291 [00:00<00:05, 54.26it/s] Loading 0: 5%|▌ | 16/291 [00:00<00:05, 54.26it/s] Loading 0: 6%|▌ | 18/291 [00:00<00:04, 55.39it/s] Loading 0: 6%|▌ | 18/291 [00:00<00:04, 55.39it/s] Loading 0: 7%|▋ | 19/291 [00:00<00:04, 55.39it/s] Loading 0: 7%|▋ | 20/291 [00:00<00:04, 55.39it/s] Loading 0: 8%|▊ | 22/291 [00:00<00:04, 55.39it/s] Loading 0: 8%|▊ | 23/291 [00:00<00:04, 55.39it/s] Loading 0: 8%|▊ | 24/291 [00:00<00:05, 52.66it/s] Loading 0: 9%|▊ | 25/291 [00:00<00:05, 52.66it/s] Loading 0: 9%|▉ | 27/291 [00:00<00:05, 52.66it/s] Loading 0: 10%|▉ | 29/291 [00:00<00:04, 52.66it/s] Loading 0: 11%|█ | 31/291 [00:00<00:04, 52.66it/s] Loading 0: 11%|█ | 32/291 [00:00<00:04, 52.66it/s] Loading 0: 11%|█▏ | 33/291 [00:00<00:09, 27.63it/s] Loading 0: 11%|█▏ | 33/291 [00:01<00:09, 27.63it/s] Loading 0: 12%|█▏ | 35/291 [00:01<00:09, 27.63it/s] Loading 0: 12%|█▏ | 36/291 [00:01<00:09, 27.63it/s] Loading 0: 13%|█▎ | 37/291 [00:01<00:09, 27.63it/s] Loading 0: 13%|█▎ | 38/291 [00:01<00:08, 30.38it/s] Loading 0: 13%|█▎ | 38/291 [00:01<00:08, 30.38it/s] Loading 0: 14%|█▎ | 40/291 [00:01<00:08, 30.38it/s] Loading 0: 14%|█▍ | 41/291 [00:01<00:08, 30.38it/s] Loading 0: 15%|█▍ | 43/291 [00:01<00:07, 32.71it/s] Loading 0: 15%|█▍ | 43/291 [00:01<00:07, 32.71it/s] Loading 0: 15%|█▌ | 45/291 [00:01<00:07, 32.71it/s] Loading 0: 16%|█▌ | 46/291 [00:01<00:07, 32.71it/s] Loading 0: 16%|█▌ | 47/291 [00:01<00:07, 32.71it/s] Loading 0: 17%|█▋ | 49/291 [00:01<00:06, 37.81it/s] Loading 0: 17%|█▋ | 49/291 [00:01<00:06, 37.81it/s] Loading 0: 17%|█▋ | 50/291 [00:01<00:06, 37.81it/s] Loading 0: 18%|█▊ | 52/291 [00:01<00:06, 37.81it/s] Loading 0: 19%|█▊ | 54/291 [00:01<00:06, 37.81it/s] Loading 0: 19%|█▉ | 55/291 [00:01<00:06, 37.81it/s] Loading 0: 19%|█▉ | 56/291 [00:01<00:06, 37.81it/s] Loading 0: 20%|█▉ | 57/291 [00:01<00:05, 46.01it/s] Loading 0: 20%|█▉ | 58/291 [00:01<00:05, 46.01it/s] Loading 0: 20%|██ | 59/291 [00:01<00:05, 46.01it/s] Loading 0: 21%|██ | 61/291 [00:01<00:04, 46.01it/s] Loading 0: 22%|██▏ | 63/291 [00:01<00:04, 48.41it/s] Loading 0: 22%|██▏ | 63/291 [00:01<00:04, 48.41it/s] Loading 0: 22%|██▏ | 64/291 [00:01<00:04, 48.41it/s] Loading 0: 22%|██▏ | 65/291 [00:01<00:04, 48.41it/s] Loading 0: 23%|██▎ | 67/291 [00:01<00:04, 48.41it/s] Loading 0: 23%|██▎ | 68/291 [00:01<00:04, 48.41it/s] Loading 0: 24%|██▎ | 69/291 [00:01<00:04, 47.71it/s] Loading 0: 24%|██▍ | 70/291 [00:01<00:04, 47.71it/s] Loading 0: 25%|██▍ | 72/291 [00:01<00:04, 47.71it/s] Loading 0: 25%|██▌ | 74/291 [00:01<00:04, 47.71it/s] Loading 0: 26%|██▌ | 75/291 [00:01<00:04, 48.40it/s] Loading 0: 26%|██▌ | 76/291 [00:01<00:04, 48.40it/s] Loading 0: 27%|██▋ | 78/291 [00:01<00:04, 48.40it/s] Loading 0: 27%|██▋ | 79/291 [00:02<00:04, 48.40it/s] Loading 0: 27%|██▋ | 80/291 [00:02<00:04, 48.40it/s] Loading 0: 28%|██▊ | 81/291 [00:02<00:08, 25.45it/s] Loading 0: 28%|██▊ | 82/291 [00:02<00:08, 25.45it/s] Loading 0: 29%|██▊ | 83/291 [00:02<00:08, 25.45it/s] Loading 0: 29%|██▉ | 85/291 [00:02<00:08, 25.45it/s] Loading 0: 30%|██▉ | 87/291 [00:02<00:06, 30.28it/s] Loading 0: 30%|██▉ | 87/291 [00:02<00:06, 30.28it/s] Loading 0: 30%|███ | 88/291 [00:02<00:06, 30.28it/s] Loading 0: 31%|███ | 89/291 [00:02<00:06, 30.28it/s] Loading 0: 31%|███▏ | 91/291 [00:02<00:06, 30.28it/s] Loading 0: 32%|███▏ | 92/291 [00:02<00:06, 32.45it/s] Loading 0: 32%|███▏ | 92/291 [00:02<00:06, 32.45it/s] Loading 0: 32%|███▏ | 94/291 [00:02<00:06, 32.45it/s] Loading 0: 33%|███▎ | 96/291 [00:02<00:06, 32.45it/s] Loading 0: 33%|███▎ | 97/291 [00:02<00:05, 32.45it/s] Loading 0: 34%|███▎ | 98/291 [00:02<00:05, 32.45it/s] Loading 0: 34%|███▍ | 100/291 [00:02<00:04, 40.95it/s] Loading 0: 34%|███▍ | 100/291 [00:02<00:04, 40.95it/s] Loading 0: 35%|███▍ | 101/291 [00:02<00:04, 40.95it/s] Loading 0: 35%|███▌ | 103/291 [00:02<00:04, 40.95it/s] Loading 0: 36%|███▌ | 105/291 [00:02<00:04, 40.95it/s] Loading 0: 36%|███▋ | 106/291 [00:02<00:04, 40.95it/s] Loading 0: 37%|███▋ | 107/291 [00:02<00:04, 40.95it/s] Loading 0: 37%|███▋ | 108/291 [00:02<00:03, 48.14it/s] Loading 0: 37%|███▋ | 109/291 [00:02<00:03, 48.14it/s] Loading 0: 38%|███▊ | 110/291 [00:02<00:03, 48.14it/s] Loading 0: 38%|███▊ | 112/291 [00:02<00:03, 48.14it/s] Loading 0: 39%|███▉ | 114/291 [00:02<00:03, 50.38it/s] Loading 0: 39%|███▉ | 114/291 [00:02<00:03, 50.38it/s] Loading 0: 40%|████ | 117/291 [00:02<00:03, 50.38it/s] Loading 0: 41%|████ | 119/291 [00:02<00:03, 50.38it/s] Loading 0: 41%|████ | 120/291 [00:02<00:03, 50.38it/s] Loading 0: 42%|████▏ | 121/291 [00:02<00:03, 50.38it/s] Loading 0: 42%|████▏ | 122/291 [00:02<00:03, 56.06it/s] Loading 0: 42%|████▏ | 122/291 [00:02<00:03, 56.06it/s] Loading 0: 42%|████▏ | 123/291 [00:02<00:02, 56.06it/s] Loading 0: 43%|████▎ | 124/291 [00:03<00:02, 56.06it/s] Loading 0: 43%|████▎ | 126/291 [00:03<00:02, 56.06it/s] Loading 0: 44%|████▎ | 127/291 [00:03<00:02, 56.06it/s] Loading 0: 44%|████▍ | 129/291 [00:03<00:02, 56.58it/s] Loading 0: 44%|████▍ | 129/291 [00:03<00:02, 56.58it/s] Loading 0: 45%|████▌ | 131/291 [00:03<00:02, 56.58it/s] Loading 0: 45%|████▌ | 132/291 [00:03<00:02, 56.58it/s] Loading 0: 46%|████▌ | 133/291 [00:03<00:02, 56.58it/s] Loading 0: 46%|████▌ | 134/291 [00:03<00:02, 56.58it/s] Loading 0: 46%|████▋ | 135/291 [00:03<00:02, 56.58it/s] Loading 0: 47%|████▋ | 136/291 [00:03<00:05, 28.31it/s] Loading 0: 47%|████▋ | 136/291 [00:03<00:05, 28.31it/s] Loading 0: 47%|████▋ | 137/291 [00:03<00:05, 28.31it/s] Loading 0: 48%|████▊ | 139/291 [00:03<00:05, 28.31it/s] Loading 0: 48%|████▊ | 140/291 [00:03<00:05, 28.31it/s] Loading 0: 48%|████▊ | 141/291 [00:03<00:04, 30.64it/s] Loading 0: 49%|████▉ | 142/291 [00:03<00:04, 30.64it/s] Loading 0: 49%|████▉ | 144/291 [00:03<00:04, 30.64it/s] Loading 0: 50%|████▉ | 145/291 [00:03<00:04, 30.64it/s] Loading 0: 50%|█████ | 146/291 [00:03<00:04, 30.64it/s] Loading 0: 51%|█████ | 148/291 [00:03<00:03, 36.78it/s] Loading 0: 51%|█████ | 148/291 [00:03<00:03, 36.78it/s] Loading 0: 51%|█████ | 149/291 [00:03<00:03, 36.78it/s] Loading 0: 52%|█████▏ | 151/291 [00:03<00:03, 36.78it/s] Loading 0: 53%|█████▎ | 153/291 [00:03<00:03, 36.78it/s] Loading 0: 53%|█████▎ | 154/291 [00:03<00:03, 36.78it/s] Loading 0: 53%|█████▎ | 155/291 [00:03<00:03, 36.78it/s] Loading 0: 54%|█████▎ | 156/291 [00:03<00:03, 42.84it/s] Loading 0: 54%|█████▍ | 157/291 [00:04<00:03, 42.84it/s] Loading 0: 54%|█████▍ | 158/291 [00:04<00:03, 42.84it/s] Loading 0: 55%|█████▍ | 160/291 [00:04<00:03, 42.84it/s] Loading 0: 56%|█████▌ | 162/291 [00:04<00:02, 45.98it/s] Loading 0: 56%|█████▌ | 162/291 [00:04<00:02, 45.98it/s] Loading 0: 56%|█████▌ | 163/291 [00:04<00:02, 45.98it/s] Loading 0: 56%|█████▋ | 164/291 [00:04<00:02, 45.98it/s] Loading 0: 57%|█████▋ | 166/291 [00:04<00:02, 45.98it/s] Loading 0: 57%|█████▋ | 167/291 [00:04<00:02, 45.98it/s] Loading 0: 58%|█████▊ | 168/291 [00:04<00:02, 46.91it/s] Loading 0: 58%|█████▊ | 169/291 [00:04<00:02, 46.91it/s] Loading 0: 59%|██model.layers.23.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.23.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.23.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.24.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.24.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.24.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.24.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.24.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.24.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.25.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.25.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.25.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.25.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.25.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.25.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.26.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.26.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.26.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.26.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.26.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.26.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.27.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.27.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.27.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.27.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.27.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.27.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.28.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.28.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.28.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.28.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.28.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.28.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.29.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.29.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.29.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.29.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.29.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.29.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.30.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.30.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.30.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.30.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.30.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.30.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.31.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v18-mkmlizer: model.layers.31.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v18-mkmlizer: ███▉ | 171/291 [00:04<00:02, 46.91it/s] Loading 0: 59%|█████▉ | 172/291 [00:04<00:02, 46.91it/s] Loading 0: 59%|█████▉ | 173/291 [00:04<00:02, 46.91it/s] Loading 0: 60%|██████ | 175/291 [00:04<00:02, 51.50it/s] Loading 0: 60%|██████ | 175/291 [00:04<00:02, 51.50it/s] Loading 0: 60%|██████ | 176/291 [00:04<00:02, 51.50it/s] Loading 0: 61%|██████ | 178/291 [00:04<00:02, 51.50it/s] Loading 0: 62%|██████▏ | 180/291 [00:04<00:02, 51.50it/s] Loading 0: 63%|██████▎ | 182/291 [00:04<00:02, 51.50it/s] Loading 0: 63%|██████▎ | 184/291 [00:04<00:02, 51.50it/s] Loading 0: 64%|██████▎ | 185/291 [00:04<00:01, 63.16it/s] Loading 0: 64%|██████▎ | 185/291 [00:04<00:01, 63.16it/s] Loading 0: 64%|██████▍ | 186/291 [00:04<00:01, 63.16it/s] Loading 0: 65%|██████▍ | 188/291 [00:04<00:01, 63.16it/s] Loading 0: 65%|██████▍ | 189/291 [00:04<00:01, 63.16it/s] Loading 0: 65%|██████▌ | 190/291 [00:04<00:01, 63.16it/s] Loading 0: 66%|██████▌ | 191/291 [00:05<00:01, 63.16it/s] Loading 0: 66%|██████▌ | 192/291 [00:05<00:03, 28.03it/s] Loading 0: 66%|██████▋ | 193/291 [00:05<00:03, 28.03it/s] Loading 0: 67%|██████▋ | 194/291 [00:05<00:03, 28.03it/s] Loading 0: 67%|██████▋ | 196/291 [00:05<00:03, 28.03it/s] Loading 0: 68%|██████▊ | 198/291 [00:05<00:02, 32.30it/s] Loading 0: 68%|██████▊ | 198/291 [00:05<00:02, 32.30it/s] Loading 0: 68%|██████▊ | 199/291 [00:05<00:02, 32.30it/s] Loading 0: 69%|██████▊ | 200/291 [00:05<00:02, 32.30it/s] Loading 0: 69%|██████▉ | 202/291 [00:05<00:02, 32.30it/s] Loading 0: 70%|██████▉ | 203/291 [00:05<00:02, 32.30it/s] Loading 0: 70%|███████ | 204/291 [00:05<00:02, 35.84it/s] Loading 0: 70%|███████ | 205/291 [00:05<00:02, 35.84it/s] Loading 0: 71%|███████ | 207/291 [00:05<00:02, 35.84it/s] Loading 0: 71%|███████▏ | 208/291 [00:05<00:02, 35.84it/s] Loading 0: 72%|███████▏ | 209/291 [00:05<00:02, 35.84it/s] Loading 0: 73%|███████▎ | 211/291 [00:05<00:01, 41.91it/s] Loading 0: 73%|███████▎ | 211/291 [00:05<00:01, 41.91it/s] Loading 0: 73%|███████▎ | 212/291 [00:05<00:01, 41.91it/s] Loading 0: 74%|███████▎ | 214/291 [00:05<00:01, 41.91it/s] Loading 0: 74%|███████▍ | 216/291 [00:05<00:01, 41.91it/s] Loading 0: 75%|███████▍ | 217/291 [00:05<00:01, 41.91it/s] Loading 0: 75%|███████▍ | 218/291 [00:05<00:01, 41.91it/s] Loading 0: 75%|███████▌ | 219/291 [00:05<00:01, 49.22it/s] Loading 0: 76%|███████▌ | 220/291 [00:05<00:01, 49.22it/s] Loading 0: 76%|███████▌ | 221/291 [00:05<00:01, 49.22it/s] Loading 0: 77%|███████▋ | 223/291 [00:05<00:01, 49.22it/s] Loading 0: 77%|███████▋ | 225/291 [00:05<00:01, 49.22it/s] Loading 0: 78%|███████▊ | 226/291 [00:05<00:01, 53.20it/s] Loading 0: 78%|███████▊ | 227/291 [00:05<00:01, 53.20it/s] Loading 0: 79%|███████▊ | 229/291 [00:05<00:01, 53.20it/s] Loading 0: 79%|███████▉ | 231/291 [00:05<00:01, 53.20it/s] Loading 0: 80%|███████▉ | 232/291 [00:06<00:01, 53.20it/s] Loading 0: 80%|████████ | 233/291 [00:06<00:01, 29.17it/s] Loading 0: 80%|████████ | 233/291 [00:06<00:01, 29.17it/s] Loading 0: 80%|████████ | 234/291 [00:06<00:01, 29.17it/s] Loading 0: 81%|████████ | 235/291 [00:06<00:01, 29.17it/s] Loading 0: 81%|████████ | 236/291 [00:06<00:01, 29.17it/s] Loading 0: 82%|████████▏ | 238/291 [00:06<00:01, 31.38it/s] Loading 0: 82%|████████▏ | 238/291 [00:06<00:01, 31.38it/s] Loading 0: 82%|████████▏ | 239/291 [00:06<00:01, 31.38it/s] Loading 0: 83%|████████▎ | 241/291 [00:06<00:01, 31.38it/s] Loading 0: 84%|████████▎ | 243/291 [00:06<00:01, 31.38it/s] Loading 0: 84%|████████▍ | 244/291 [00:06<00:01, 31.38it/s] Loading 0: 84%|████████▍ | 245/291 [00:06<00:01, 31.38it/s] Loading 0: 85%|████████▍ | 246/291 [00:06<00:01, 39.52it/s] Loading 0: 85%|████████▍ | 247/291 [00:06<00:01, 39.52it/s] Loading 0: 85%|████████▌ | 248/291 [00:06<00:01, 39.52it/s] Loading 0: 86%|████████▌ | 250/291 [00:06<00:01, 39.52it/s] Loading 0: 87%|████████▋ | 252/291 [00:06<00:00, 39.52it/s] Loading 0: 87%|████████▋ | 253/291 [00:06<00:00, 45.24it/s] Loading 0: 87%|████████▋ | 253/291 [00:06<00:00, 45.24it/s] Loading 0: 87%|████████▋ | 254/291 [00:06<00:00, 45.24it/s] Loading 0: 88%|████████▊ | 256/291 [00:06<00:00, 45.24it/s] Loading 0: 88%|████████▊ | 257/291 [00:06<00:00, 45.24it/s] Loading 0: 89%|████████▉ | 259/291 [00:06<00:00, 46.97it/s] Loading 0: 89%|████████▉ | 259/291 [00:06<00:00, 46.97it/s] Loading 0: 90%|████████▉ | 261/291 [00:06<00:00, 46.97it/s] Loading 0: 90%|█████████ | 262/291 [00:06<00:00, 46.97it/s] Loading 0: 90%|█████████ | 263/291 [00:06<00:00, 46.97it/s] Loading 0: 91%|█████████ | 265/291 [00:06<00:00, 49.69it/s] Loading 0: 91%|█████████ | 265/291 [00:06<00:00, 49.69it/s] Loading 0: 91%|█████████▏| 266/291 [00:06<00:00, 49.69it/s] Loading 0: 92%|█████████▏| 268/291 [00:06<00:00, 49.69it/s] Loading 0: 93%|█████████▎| 270/291 [00:06<00:00, 49.69it/s] Loading 0: 93%|█████████▎| 271/291 [00:06<00:00, 49.69it/s] Loading 0: 93%|█████████▎| 272/291 [00:06<00:00, 49.69it/s] Loading 0: 94%|█████████▍| 273/291 [00:06<00:00, 56.33it/s] Loading 0: 94%|█████████▍| 274/291 [00:06<00:00, 56.33it/s] Loading 0: 95%|█████████▍| 275/291 [00:06<00:00, 56.33it/s] Loading 0: 95%|█████████▌| 277/291 [00:06<00:00, 56.33it/s] Loading 0: 96%|█████████▌| 279/291 [00:06<00:00, 56.33it/s] Loading 0: 96%|█████████▌| 280/291 [00:06<00:00, 59.10it/s] Loading 0: 97%|█████████▋| 282/291 [00:06<00:00, 59.10it/s] Loading 0: 98%|█████████▊| 284/291 [00:06<00:00, 59.10it/s] Loading 0: 98%|█████████▊| 285/291 [00:14<00:00, 59.10it/s] Loading 0: 98%|█████████▊| 286/291 [00:14<00:00, 59.10it/s] Loading 0: 99%|█████████▊| 287/291 [00:14<00:01, 3.07it/s] Loading 0: 99%|█████████▊| 287/291 [00:14<00:01, 3.07it/s] Loading 0: 99%|█████████▉| 288/291 [00:14<00:00, 3.07it/s] Loading 0: 99%|█████████▉| 289/291 [00:14<00:00, 3.07it/s] Loading 0: 100%|█████████▉| 290/291 [00:14<00:00, 3.07it/s] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
jellywibble-lora-120k-p-2801-v18-mkmlizer: quantized model in 33.892s
jellywibble-lora-120k-p-2801-v18-mkmlizer: Processed model Jellywibble/lora_120k_pref_data_ep3_stacked_elo_alignment in 93.620s
jellywibble-lora-120k-p-2801-v18-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jellywibble-lora-120k-p-2801-v18-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v18
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v18/config.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v18/tokenizer.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v18/tokenizer_config.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v18/special_tokens_map.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v18/flywheel_model.0.safetensors
jellywibble-lora-120k-p-2801-v18-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:950: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-p-2801-v18-mkmlizer: warnings.warn(
jellywibble-lora-120k-p-2801-v18-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
jellywibble-lora-120k-p-2801-v18-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:778: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-p-2801-v18-mkmlizer: warnings.warn(
jellywibble-lora-120k-p-2801-v18-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-p-2801-v18-mkmlizer: warnings.warn(
jellywibble-lora-120k-p-2801-v18-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:07<00:07, 7.54s/it] Downloading shards: 100%|██████████| 2/2 [00:09<00:00, 4.32s/it] Downloading shards: 100%|██████████| 2/2 [00:09<00:00, 4.80s/it]
jellywibble-lora-120k-p-2801-v18-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 1.52it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 2.49it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 2.27it/s]
jellywibble-lora-120k-p-2801-v18-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
jellywibble-lora-120k-p-2801-v18-mkmlizer: creating bucket guanaco-reward-models
jellywibble-lora-120k-p-2801-v18-mkmlizer: Bucket 's3://guanaco-reward-models/' created
jellywibble-lora-120k-p-2801-v18-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/special_tokens_map.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/vocab.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/config.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/tokenizer_config.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/merges.txt
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/tokenizer.json
jellywibble-lora-120k-p-2801-v18-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v18_reward/reward.tensors
Job jellywibble-lora-120k-p-2801-v18-mkmlizer completed after 143.62s with status: succeeded
Stopping job with name jellywibble-lora-120k-p-2801-v18-mkmlizer
Pipeline stage MKMLizer completed in 144.81s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service jellywibble-lora-120k-p-2801-v18
Waiting for inference service jellywibble-lora-120k-p-2801-v18 to be ready
Inference service jellywibble-lora-120k-p-2801-v18 ready after 50.2770299911499s
Pipeline stage ISVCDeployer completed in 57.37s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.801013708114624s
Received healthy response to inference request in 1.8276598453521729s
Received healthy response to inference request in 1.806027889251709s
Received healthy response to inference request in 1.8575620651245117s
Received healthy response to inference request in 1.862137794494629s
5 requests
0 failed requests
5th percentile: 1.8103542804718018
10th percentile: 1.8146806716918946
20th percentile: 1.82333345413208
30th percentile: 1.8336402893066406
40th percentile: 1.8456011772155763
50th percentile: 1.8575620651245117
60th percentile: 1.8593923568725585
70th percentile: 1.8612226486206054
80th percentile: 2.049912977218628
90th percentile: 2.425463342666626
95th percentile: 2.6132385253906247
99th percentile: 2.763458671569824
mean time: 2.030880260467529
Pipeline stage StressChecker completed in 11.63s
jellywibble-lora-120k-p_2801_v18 status is now deployed due to DeploymentManager action
jellywibble-lora-120k-p_2801_v18 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of jellywibble-lora-120k-p_2801_v18
Running pipeline stage ISVCDeleter
Checking if service jellywibble-lora-120k-p-2801-v18 is running
Skipping teardown as no inference service was found
Pipeline stage ISVCDeleter completed in 4.61s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key jellywibble-lora-120k-p-2801-v18/config.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v18/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v18/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v18/tokenizer.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v18/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key jellywibble-lora-120k-p-2801-v18_reward/config.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v18_reward/merges.txt from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v18_reward/reward.tensors from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v18_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v18_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v18_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v18_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 7.62s
jellywibble-lora-120k-p_2801_v18 status is now torndown due to DeploymentManager action