developer_uid: Epiculous
submission_id: epiculous-crimson-dawn-v0-2_v2
model_name: Crimson_Dawn-v0-2-VT
model_group: Epiculous/Crimson_Dawn-v
status: torndown
timestamp: 2024-09-03T13:12:13+00:00
num_battles: 14227
num_wins: 7345
celo_rating: 1251.92
family_friendly_score: 0.0
submission_type: basic
model_repo: Epiculous/Crimson_Dawn-v0.2
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 512
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6916170273802829, 'latency_mean': 1.4457928216457367, 'latency_p50': 1.4369617700576782, 'latency_p90': 1.6163009881973267}, {'batch_size': 3, 'throughput': 1.30237567902449, 'latency_mean': 2.2892454254627226, 'latency_p50': 2.2895584106445312, 'latency_p90': 2.525046730041504}, {'batch_size': 5, 'throughput': 1.5537064853807585, 'latency_mean': 3.2110851311683657, 'latency_p50': 3.2180899381637573, 'latency_p90': 3.5687665700912476}, {'batch_size': 6, 'throughput': 1.5893548047360044, 'latency_mean': 3.762860586643219, 'latency_p50': 3.796831965446472, 'latency_p90': 4.223861265182495}, {'batch_size': 8, 'throughput': 1.5669696926801506, 'latency_mean': 5.072700165510177, 'latency_p50': 5.080024242401123, 'latency_p90': 5.672004652023316}, {'batch_size': 10, 'throughput': 1.5220449243198693, 'latency_mean': 6.53003179192543, 'latency_p50': 6.579935312271118, 'latency_p90': 7.395458173751831}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: Crimson_Dawn-v0-2-VT
is_internal_developer: False
language_model: Epiculous/Crimson_Dawn-v0.2
model_size: 13B
ranking_group: single
throughput_3p7s: 1.59
us_pacific_date: 2024-09-03
win_ratio: 0.5162718774161805
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.075, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': False}
Resubmit model
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name epiculous-crimson-dawn-v0-2-v2-mkmlizer
Waiting for job on epiculous-crimson-dawn-v0-2-v2-mkmlizer to finish
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ _____ __ __ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ /___/ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ Version: 0.10.1 ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ https://mk1.ai ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ The license key for the current software has been verified as ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ belonging to: ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ Chai Research Corp. ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ║ ║
epiculous-crimson-dawn-v0-2-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
epiculous-crimson-dawn-v0-2-v2-mkmlizer: Downloaded to shared memory in 28.481s
epiculous-crimson-dawn-v0-2-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp_4bfl2d_, device:0
epiculous-crimson-dawn-v0-2-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
epiculous-crimson-dawn-v0-2-v2-mkmlizer: quantized model in 36.133s
epiculous-crimson-dawn-v0-2-v2-mkmlizer: Processed model Epiculous/Crimson_Dawn-v0.2 in 64.614s
epiculous-crimson-dawn-v0-2-v2-mkmlizer: creating bucket guanaco-mkml-models
epiculous-crimson-dawn-v0-2-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
epiculous-crimson-dawn-v0-2-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/epiculous-crimson-dawn-v0-2-v2
epiculous-crimson-dawn-v0-2-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/epiculous-crimson-dawn-v0-2-v2/config.json
epiculous-crimson-dawn-v0-2-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/epiculous-crimson-dawn-v0-2-v2/special_tokens_map.json
epiculous-crimson-dawn-v0-2-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/epiculous-crimson-dawn-v0-2-v2/tokenizer_config.json
epiculous-crimson-dawn-v0-2-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/epiculous-crimson-dawn-v0-2-v2/flywheel_model.0.safetensors
epiculous-crimson-dawn-v0-2-v2-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.84it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 47.35it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:07, 44.27it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:07, 43.12it/s] Loading 0: 8%|▊ | 28/363 [00:00<00:07, 42.62it/s] Loading 0: 9%|▉ | 33/363 [00:00<00:08, 40.66it/s] Loading 0: 11%|█ | 39/363 [00:00<00:07, 45.75it/s] Loading 0: 12%|█▏ | 44/363 [00:01<00:06, 45.86it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:07, 40.92it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 47.88it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:09, 32.42it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 38.09it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 40.36it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:07, 36.24it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 44.20it/s] Loading 0: 26%|██▌ | 95/363 [00:02<00:05, 45.06it/s] Loading 0: 28%|██▊ | 100/363 [00:02<00:06, 39.10it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:06, 42.82it/s] Loading 0: 31%|███ | 112/363 [00:02<00:05, 46.77it/s] Loading 0: 33%|███▎ | 118/363 [00:02<00:06, 38.07it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 44.82it/s] Loading 0: 36%|███▌ | 131/363 [00:03<00:05, 45.03it/s] Loading 0: 37%|███▋ | 136/363 [00:03<00:06, 35.84it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 31.77it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 32.98it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 32.47it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 36.91it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 37.03it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 41.43it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 43.40it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:04, 37.83it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 44.42it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 43.38it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:04, 41.98it/s] Loading 0: 55%|█████▍ | 198/363 [00:04<00:03, 43.61it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 36.97it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 44.52it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 43.34it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 43.10it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:04, 28.42it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 30.76it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 36.98it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 37.87it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.31it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 40.20it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 38.87it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 43.73it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 43.87it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:01, 44.65it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:01, 44.50it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 35.32it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 42.15it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.24it/s] Loading 0: 83%|████████▎ | 302/363 [00:07<00:01, 46.46it/s] Loading 0: 85%|████████▍ | 307/363 [00:14<00:22, 2.53it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:14, 3.43it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.49it/s] Loading 0: 90%|████████▉ | 325/363 [00:14<00:05, 7.13it/s] Loading 0: 91%|█████████ | 330/363 [00:14<00:03, 8.98it/s] Loading 0: 93%|█████████▎| 338/363 [00:15<00:01, 13.53it/s] Loading 0: 95%|█████████▍| 344/363 [00:15<00:01, 16.58it/s] Loading 0: 96%|█████████▌| 349/363 [00:15<00:00, 19.49it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 25.49it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 27.70it/s]
Job epiculous-crimson-dawn-v0-2-v2-mkmlizer completed after 84.77s with status: succeeded
Stopping job with name epiculous-crimson-dawn-v0-2-v2-mkmlizer
Pipeline stage MKMLizer completed in 85.78s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service epiculous-crimson-dawn-v0-2-v2
Waiting for inference service epiculous-crimson-dawn-v0-2-v2 to be ready
Inference service epiculous-crimson-dawn-v0-2-v2 ready after 150.44817900657654s
Pipeline stage MKMLDeployer completed in 150.91s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.3130381107330322s
Received healthy response to inference request in 1.974778175354004s
Received healthy response to inference request in 1.7432820796966553s
Received healthy response to inference request in 2.1281511783599854s
Received healthy response to inference request in 1.6210968494415283s
5 requests
0 failed requests
5th percentile: 1.6455338954925538
10th percentile: 1.669970941543579
20th percentile: 1.7188450336456298
30th percentile: 1.789581298828125
40th percentile: 1.8821797370910645
50th percentile: 1.974778175354004
60th percentile: 2.0361273765563963
70th percentile: 2.097476577758789
80th percentile: 2.165128564834595
90th percentile: 2.2390833377838133
95th percentile: 2.2760607242584228
99th percentile: 2.30564263343811
mean time: 1.956069278717041
Pipeline stage StressChecker completed in 10.90s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
starting trigger_guanaco_pipeline %s
Pipeline stage TriggerMKMLProfilingPipeline completed in 4.53s
epiculous-crimson-dawn-v0-2_v2 status is now deployed due to DeploymentManager action
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.67s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service epiculous-crimson-dawn-v0-2-v2-profiler
Waiting for inference service epiculous-crimson-dawn-v0-2-v2-profiler to be ready
Inference service epiculous-crimson-dawn-v0-2-v2-profiler ready after 140.3567771911621s
Pipeline stage MKMLProfilerDeployer completed in 141.03s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/epiculous-crimson-daf1bc064e6d093f19270dbb374426c3b9-deplo5vnj7:/code/chaiverse_profiler_1725369567 --namespace tenant-chaiml-guanaco
kubectl exec -it epiculous-crimson-daf1bc064e6d093f19270dbb374426c3b9-deplo5vnj7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1725369567 && chmod +x profiles.py && python profiles.py profile --best_of_n 8 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1725369567/summary.json'
epiculous-crimson-dawn-v0-2_v2 status is now inactive due to auto deactivation removed underperforming models
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service epiculous-crimson-dawn-v0-2-v2-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 1.66s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service epiculous-crimson-dawn-v0-2-v2-profiler
Waiting for inference service epiculous-crimson-dawn-v0-2-v2-profiler to be ready
Inference service epiculous-crimson-dawn-v0-2-v2-profiler ready after 150.39885306358337s
Pipeline stage MKMLProfilerDeployer completed in 150.77s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/epiculous-crimson-daf1bc064e6d093f19270dbb374426c3b9-deplofk5q7:/code/chaiverse_profiler_1725395635 --namespace tenant-chaiml-guanaco
kubectl exec -it epiculous-crimson-daf1bc064e6d093f19270dbb374426c3b9-deplofk5q7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1725395635 && chmod +x profiles.py && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1725395635/summary.json'
kubectl exec -it epiculous-crimson-daf1bc064e6d093f19270dbb374426c3b9-deplofk5q7 --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1725395635/summary.json'
Pipeline stage MKMLProfilerRunner completed in 961.76s
cleanup pipeline after completion
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service epiculous-crimson-dawn-v0-2-v2-profiler is running
Tearing down inference service epiculous-crimson-dawn-v0-2-v2-profiler
Service epiculous-crimson-dawn-v0-2-v2-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.49s
epiculous-crimson-dawn-v0-2_v2 status is now torndown due to DeploymentManager action