Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer
Waiting for job on chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer to finish
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: Downloaded to shared memory in 50.516s
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpgocogwvc, device:0
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ _____ __ __ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ /___/ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ Version: 0.11.12 ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ https://mk1.ai ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ belonging to: ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ Chai Research Corp. ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
admin requested tearing down of rirv938-mistral-22b-14k-_7315_v1
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLDeleter
Checking if service rirv938-mistral-22b-14k-7315-v1 is running
Tearing down inference service rirv938-mistral-22b-14k-7315-v1
Service rirv938-mistral-22b-14k-7315-v1 has been torndown
Pipeline stage MKMLDeleter completed in 1.82s
run pipeline stage %s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key rirv938-mistral-22b-14k-7315-v1/config.json from bucket guanaco-mkml-models
Deleting key rirv938-mistral-22b-14k-7315-v1/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key rirv938-mistral-22b-14k-7315-v1/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Deleting key rirv938-mistral-22b-14k-7315-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key rirv938-mistral-22b-14k-7315-v1/tokenizer.json from bucket guanaco-mkml-models
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: Downloaded to shared memory in 32.565s
Deleting key rirv938-mistral-22b-14k-7315-v1/tokenizer_config.json from bucket guanaco-mkml-models
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmps_4sydia, device:0
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Pipeline stage MKMLModelDeleter completed in 3.46s
Shutdown handler de-registered
rirv938-mistral-22b-14k-_7315_v1 status is now torndown due to DeploymentManager action
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-nemo-chai-4linear-2892-v1-mkmlizer
Waiting for job on chaiml-nemo-chai-4linear-2892-v1-mkmlizer to finish
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: quantized model in 35.225s
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: Processed model ChaiML/nemo-chai-4bio-merge-albert in 85.741s
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v1
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v1/config.json
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v1/special_tokens_map.json
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v1/tokenizer_config.json
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v1/tokenizer.json
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ _____ __ __ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ /___/ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ Version: 0.11.12 ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ belonging to: ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v1/flywheel_model.0.safetensors
chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%| | 2/363 [00:06<18:06, 3.01s/it]
Loading 0: 2%|▏ | 6/363 [00:06<04:49, 1.23it/s]
Loading 0: 4%|▎ | 13/363 [00:06<01:43, 3.39it/s]
Loading 0: 5%|▍ | 17/363 [00:06<01:09, 4.96it/s]
Loading 0: 6%|▋ | 23/363 [00:06<00:41, 8.11it/s]
Loading 0: 8%|▊ | 29/363 [00:06<00:28, 11.53it/s]
Loading 0: 9%|▉ | 34/363 [00:06<00:22, 14.70it/s]
Loading 0: 11%|█ | 40/363 [00:07<00:19, 16.84it/s]
Loading 0: 12%|█▏ | 44/363 [00:07<00:16, 19.50it/s]
Loading 0: 14%|█▍ | 50/363 [00:07<00:12, 25.08it/s]
Loading 0: 15%|█▌ | 56/363 [00:07<00:10, 28.33it/s]
Loading 0: 17%|█▋ | 61/363 [00:07<00:09, 30.52it/s]
Loading 0: 18%|█▊ | 67/363 [00:07<00:08, 35.80it/s]
Loading 0: 20%|█▉ | 72/363 [00:07<00:07, 37.81it/s]
Loading 0: 21%|██ | 77/363 [00:07<00:07, 38.89it/s]
Loading 0: 23%|██▎ | 82/363 [00:08<00:06, 41.47it/s]
Loading 0: 24%|██▍ | 87/363 [00:08<00:07, 36.24it/s]
Loading 0: 26%|██▌ | 94/363 [00:08<00:06, 43.65it/s]
Loading 0: 27%|██▋ | 99/363 [00:08<00:06, 42.72it/s]
Loading 0: 29%|██▉ | 105/363 [00:08<00:06, 39.70it/s]
Loading 0: 31%|███ | 112/363 [00:08<00:05, 46.44it/s]
Loading 0: 33%|███▎ | 118/363 [00:08<00:05, 48.47it/s]
Loading 0: 34%|███▍ | 124/363 [00:09<00:07, 32.92it/s]
Loading 0: 36%|███▌ | 131/363 [00:09<00:05, 38.78it/s]
Loading 0: 38%|███▊ | 137/363 [00:09<00:05, 38.20it/s]
Loading 0: 39%|███▉ | 142/363 [00:09<00:05, 39.04it/s]
Loading 0: 41%|████ | 149/363 [00:09<00:04, 44.23it/s]
Loading 0: 43%|████▎ | 155/363 [00:09<00:04, 42.74it/s]
Loading 0: 44%|████▍ | 160/363 [00:09<00:04, 42.47it/s]
Loading 0: 46%|████▌ | 167/363 [00:10<00:04, 47.57it/s]
Loading 0: 48%|████▊ | 173/363 [00:10<00:04, 45.34it/s]
Loading 0: 49%|████▉ | 178/363 [00:10<00:04, 44.68it/s]
Loading 0: 51%|█████ | 184/363 [00:10<00:03, 47.85it/s]
Loading 0: 52%|█████▏ | 189/363 [00:10<00:03, 47.82it/s]
Loading 0: 54%|█████▎ | 195/363 [00:10<00:03, 42.98it/s]
Loading 0: 56%|█████▌ | 202/363 [00:10<00:04, 37.50it/s]
Loading 0: 57%|█████▋ | 207/363 [00:11<00:03, 39.05it/s]
Loading 0: 58%|█████▊ | 212/363 [00:11<00:03, 41.03it/s]
Loading 0: 60%|██████ | 218/363 [00:11<00:03, 40.69it/s]
Loading 0: 61%|██████▏ | 223/363 [00:11<00:03, 40.56it/s]
Loading 0: 63%|██████▎ | 230/363 [00:11<00:02, 45.95it/s]
Loading 0: 65%|██████▍ | 235/363 [00:11<00:03, 42.63it/s]
Loading 0: 66%|██████▌ | 240/363 [00:11<00:03, 36.68it/s]
Loading 0: 68%|██████▊ | 248/363 [00:11<00:02, 44.37it/s]
Loading 0: 70%|██████▉ | 254/363 [00:12<00:02, 43.29it/s]
Loading 0: 71%|███████▏ | 259/363 [00:12<00:02, 43.22it/s]
Loading 0: 73%|███████▎ | 266/363 [00:12<00:02, 47.52it/s]
Loading 0: 75%|███████▍ | 272/363 [00:12<00:02, 43.66it/s]
Loading 0: 76%|███████▋ | 277/363 [00:12<00:01, 43.32it/s]
Loading 0: 78%|███████▊ | 283/363 [00:12<00:02, 34.90it/s]
Loading 0: 79%|███████▉ | 287/363 [00:12<00:02, 35.28it/s]
Loading 0: 81%|████████ | 293/363 [00:13<00:01, 39.30it/s]
Loading 0: 82%|████████▏ | 299/363 [00:13<00:01, 38.74it/s]
Loading 0: 84%|████████▎ | 304/363 [00:13<00:01, 39.28it/s]
Loading 0: 85%|████████▌ | 310/363 [00:13<00:01, 44.04it/s]
Loading 0: 87%|████████▋ | 315/363 [00:13<00:01, 44.92it/s]
Loading 0: 88%|████████▊ | 321/363 [00:13<00:01, 41.17it/s]
Loading 0: 90%|█████████ | 328/363 [00:13<00:00, 47.94it/s]
Loading 0: 92%|█████████▏| 334/363 [00:13<00:00, 49.19it/s]
Loading 0: 94%|█████████▎| 340/363 [00:14<00:00, 43.56it/s]
Loading 0: 95%|█████████▌| 346/363 [00:14<00:00, 47.23it/s]
Loading 0: 97%|█████████▋| 352/363 [00:14<00:00, 42.52it/s]
Loading 0: 98%|█████████▊| 357/363 [00:14<00:00, 37.18it/s]
Job chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer completed after 113.47s with status: succeeded
Stopping job with name chaiml-nemo-chai-4bio-me-9462-v1-mkmlizer
Pipeline stage MKMLizer completed in 114.71s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-nemo-chai-4bio-me-9462-v1
Waiting for inference service chaiml-nemo-chai-4bio-me-9462-v1 to be ready
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-nemo-chai-4linear-2892-v2-mkmlizer
Waiting for job on chaiml-nemo-chai-4linear-2892-v2-mkmlizer to finish
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: quantized model in 36.702s
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: Processed model ChaiML/nemo-chai-4bio-merge-albert in 69.267s
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: creating bucket guanaco-mkml-models
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v2
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v2/config.json
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v2/special_tokens_map.json
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v2/tokenizer_config.json
chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-nemo-chai-4bio-me-9462-v2/tokenizer.json
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ _____ __ __ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ /___/ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ Version: 0.11.12 ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ https://mk1.ai ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ belonging to: ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ Chai Research Corp. ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ║ ║
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: Downloaded to shared memory in 50.453s
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp2y3x1n9k, device:0
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Job chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer completed after 111.19s with status: succeeded
Stopping job with name chaiml-nemo-chai-4bio-me-9462-v2-mkmlizer
Pipeline stage MKMLizer completed in 111.70s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-nemo-chai-4bio-me-9462-v2
Waiting for inference service chaiml-nemo-chai-4bio-me-9462-v2 to be ready
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: Downloaded to shared memory in 33.711s
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmprqzdqxi3, device:0
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: quantized model in 36.513s
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: Processed model ChaiML/nemo-chai-4linear-albert in 86.965s
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v1
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v1/config.json
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v1/special_tokens_map.json
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v1/tokenizer_config.json
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v1/tokenizer.json
chaiml-nemo-chai-4linear-2892-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v1/flywheel_model.0.safetensors
chaiml-nemo-chai-4linear-2892-v1-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%| | 2/363 [00:05<18:02, 3.00s/it]
Loading 0: 2%|▏ | 6/363 [00:06<04:50, 1.23it/s]
Loading 0: 3%|▎ | 11/363 [00:06<02:07, 2.76it/s]
Loading 0: 4%|▍ | 15/363 [00:06<01:20, 4.32it/s]
Loading 0: 6%|▋ | 23/363 [00:06<00:39, 8.59it/s]
Loading 0: 8%|▊ | 28/363 [00:06<00:28, 11.58it/s]
Loading 0: 9%|▉ | 33/363 [00:06<00:23, 14.16it/s]
Loading 0: 11%|█ | 40/363 [00:07<00:18, 17.30it/s]
Loading 0: 12%|█▏ | 44/363 [00:07<00:16, 19.45it/s]
Loading 0: 13%|█▎ | 49/363 [00:07<00:13, 23.77it/s]
Loading 0: 15%|█▍ | 53/363 [00:07<00:12, 25.79it/s]
Loading 0: 16%|█▌ | 58/363 [00:07<00:10, 30.14it/s]
Loading 0: 17%|█▋ | 63/363 [00:07<00:09, 31.03it/s]
Loading 0: 18%|█▊ | 67/363 [00:07<00:09, 31.69it/s]
Loading 0: 20%|█▉ | 71/363 [00:07<00:08, 32.73it/s]
Loading 0: 21%|██ | 77/363 [00:08<00:07, 37.81it/s]
Loading 0: 23%|██▎ | 83/363 [00:08<00:07, 38.46it/s]
Loading 0: 24%|██▍ | 88/363 [00:08<00:07, 38.54it/s]
Loading 0: 26%|██▌ | 95/363 [00:08<00:06, 44.34it/s]
Loading 0: 28%|██▊ | 101/363 [00:08<00:06, 43.64it/s]
Loading 0: 29%|██▉ | 106/363 [00:08<00:06, 40.87it/s]
Loading 0: 31%|███ | 112/363 [00:08<00:05, 45.14it/s]
Loading 0: 32%|███▏ | 117/363 [00:08<00:05, 45.44it/s]
Loading 0: 34%|███▎ | 122/363 [00:09<00:07, 33.28it/s]
Loading 0: 35%|███▍ | 126/363 [00:09<00:06, 34.58it/s]
Loading 0: 36%|███▌ | 131/363 [00:09<00:06, 37.95it/s]
Loading 0: 38%|███▊ | 137/363 [00:09<00:05, 39.13it/s]
Loading 0: 39%|███▉ | 142/363 [00:09<00:05, 39.73it/s]
Loading 0: 41%|████ | 148/363 [00:09<00:04, 43.87it/s]
Loading 0: 42%|████▏ | 153/363 [00:09<00:04, 43.53it/s]
Loading 0: 44%|████▎ | 158/363 [00:09<00:04, 43.93it/s]
Loading 0: 45%|████▌ | 164/363 [00:10<00:04, 42.38it/s]
Loading 0: 47%|████▋ | 169/363 [00:10<00:04, 42.74it/s]
Loading 0: 48%|████▊ | 176/363 [00:10<00:03, 47.62it/s]
Loading 0: 50%|█████ | 182/363 [00:10<00:03, 45.68it/s]
Loading 0: 52%|█████▏ | 187/363 [00:10<00:03, 44.45it/s]
Loading 0: 53%|█████▎ | 193/363 [00:10<00:03, 45.84it/s]
Loading 0: 55%|█████▍ | 198/363 [00:10<00:03, 43.99it/s]
Loading 0: 56%|█████▌ | 203/363 [00:11<00:05, 31.31it/s]
Loading 0: 57%|█████▋ | 207/363 [00:11<00:04, 32.62it/s]
Loading 0: 58%|█████▊ | 211/363 [00:11<00:04, 33.96it/s]
Loading 0: 59%|█████▉ | 215/363 [00:11<00:04, 33.48it/s]
Loading 0: 61%|██████ | 220/363 [00:11<00:03, 36.72it/s]
Loading 0: 62%|██████▏ | 224/363 [00:11<00:03, 36.41it/s]
Loading 0: 63%|██████▎ | 230/363 [00:11<00:03, 41.12it/s]
Loading 0: 65%|██████▍ | 235/363 [00:11<00:02, 42.96it/s]
Loading 0: 66%|██████▌ | 240/363 [00:12<00:03, 35.90it/s]
Loading 0: 67%|██████▋ | 245/363 [00:12<00:03, 38.03it/s]
Loading 0: 69%|██████▉ | 250/363 [00:12<00:03, 37.42it/s]
Loading 0: 71%|███████ | 256/363 [00:12<00:02, 42.17it/s]
Loading 0: 72%|███████▏ | 261/363 [00:12<00:02, 42.04it/s]
Loading 0: 73%|███████▎ | 266/363 [00:12<00:02, 42.42it/s]
Loading 0: 75%|███████▍ | 272/363 [00:12<00:02, 41.31it/s]
Loading 0: 76%|███████▋ | 277/363 [00:13<00:02, 40.20it/s]
Loading 0: 78%|███████▊ | 283/363 [00:13<00:02, 31.63it/s]
Loading 0: 79%|███████▉ | 287/363 [00:13<00:02, 30.99it/s]
Loading 0: 80%|████████ | 292/363 [00:13<00:02, 34.41it/s]
Loading 0: 82%|████████▏ | 296/363 [00:13<00:01, 34.83it/s]
Loading 0: 83%|████████▎ | 302/363 [00:13<00:01, 38.86it/s]
Loading 0: 85%|████████▍ | 307/363 [00:13<00:01, 41.21it/s]
Loading 0: 86%|████████▌ | 312/363 [00:14<00:01, 36.60it/s]
Loading 0: 88%|████████▊ | 319/363 [00:14<00:01, 42.38it/s]
Loading 0: 89%|████████▉ | 324/363 [00:14<00:00, 40.46it/s]
Loading 0: 91%|█████████ | 329/363 [00:14<00:00, 41.19it/s]
Loading 0: 92%|█████████▏| 334/363 [00:14<00:00, 43.23it/s]
Loading 0: 93%|█████████▎| 339/363 [00:14<00:00, 37.43it/s]
Loading 0: 96%|█████████▌| 347/363 [00:14<00:00, 45.15it/s]
Loading 0: 97%|█████████▋| 353/363 [00:14<00:00, 42.52it/s]
Loading 0: 99%|█████████▊| 358/363 [00:15<00:00, 41.57it/s]
Job chaiml-nemo-chai-4linear-2892-v1-mkmlizer completed after 115.33s with status: succeeded
Stopping job with name chaiml-nemo-chai-4linear-2892-v1-mkmlizer
Pipeline stage MKMLizer completed in 115.96s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.20s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-nemo-chai-4linear-2892-v1
Waiting for inference service chaiml-nemo-chai-4linear-2892-v1 to be ready
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: quantized model in 36.497s
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: Processed model ChaiML/nemo-chai-4linear-albert in 70.208s
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: creating bucket guanaco-mkml-models
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v2
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v2/config.json
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v2/special_tokens_map.json
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v2/tokenizer_config.json
chaiml-nemo-chai-4linear-2892-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-nemo-chai-4linear-2892-v2/tokenizer.json
chaiml-nemo-chai-4linear-2892-v2-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%| | 2/363 [00:06<18:06, 3.01s/it]
Loading 0: 2%|▏ | 6/363 [00:06<04:50, 1.23it/s]
Loading 0: 3%|▎ | 11/363 [00:06<02:07, 2.75it/s]
Loading 0: 4%|▍ | 15/363 [00:06<01:21, 4.29it/s]
Loading 0: 6%|▋ | 23/363 [00:06<00:39, 8.54it/s]
Loading 0: 8%|▊ | 29/363 [00:06<00:27, 11.93it/s]
Loading 0: 9%|▉ | 34/363 [00:06<00:21, 15.25it/s]
Loading 0: 11%|█ | 40/363 [00:07<00:18, 17.48it/s]
Loading 0: 12%|█▏ | 44/363 [00:07<00:16, 19.88it/s]
Loading 0: 14%|█▍ | 50/363 [00:07<00:12, 25.01it/s]
Loading 0: 15%|█▌ | 55/363 [00:07<00:10, 28.79it/s]
Loading 0: 17%|█▋ | 60/363 [00:07<00:11, 27.02it/s]
Loading 0: 18%|█▊ | 67/363 [00:07<00:08, 33.81it/s]
Loading 0: 20%|█▉ | 72/363 [00:07<00:08, 34.84it/s]
Loading 0: 21%|██ | 77/363 [00:08<00:08, 35.59it/s]
Loading 0: 23%|██▎ | 82/363 [00:08<00:07, 37.06it/s]
Loading 0: 24%|██▍ | 87/363 [00:08<00:09, 30.44it/s]
Loading 0: 26%|██▌ | 94/363 [00:08<00:07, 36.90it/s]
Loading 0: 27%|██▋ | 99/363 [00:08<00:07, 36.97it/s]
Loading 0: 29%|██▊ | 104/363 [00:08<00:06, 38.55it/s]
Loading 0: 30%|███ | 110/363 [00:08<00:06, 39.12it/s]
Loading 0: 32%|███▏ | 115/363 [00:09<00:06, 38.41it/s]
Loading 0: 33%|███▎ | 121/363 [00:09<00:07, 31.97it/s]
Loading 0: 34%|███▍ | 125/363 [00:09<00:07, 32.39it/s]
Loading 0: 36%|███▌ | 131/363 [00:09<00:06, 36.78it/s]
Loading 0: 37%|███▋ | 136/363 [00:09<00:05, 39.53it/s]
Loading 0: 39%|███▉ | 141/363 [00:09<00:06, 33.46it/s]
Loading 0: 41%|████ | 149/363 [00:09<00:05, 41.98it/s]
Loading 0: 43%|████▎ | 155/363 [00:10<00:05, 41.31it/s]
Loading 0: 44%|████▍ | 160/363 [00:10<00:05, 40.06it/s]
Loading 0: 46%|████▌ | 167/363 [00:10<00:04, 43.92it/s]
Loading 0: 47%|████▋ | 172/363 [00:10<00:04, 45.33it/s]
Loading 0: 49%|████▉ | 177/363 [00:10<00:05, 36.69it/s]
Loading 0: 51%|█████ | 184/363 [00:10<00:04, 43.96it/s]
Loading 0: 52%|█████▏ | 189/363 [00:10<00:03, 43.89it/s]
Loading 0: 53%|█████▎ | 194/363 [00:10<00:03, 45.36it/s]
Loading 0: 55%|█████▌ | 200/363 [00:11<00:03, 43.12it/s]
Loading 0: 56%|█████▋ | 205/363 [00:11<00:05, 29.73it/s]
Loading 0: 58%|█████▊ | 211/363 [00:11<00:04, 35.14it/s]
Loading 0: 60%|█████▉ | 216/363 [00:11<00:04, 36.45it/s]
Loading 0: 61%|██████ | 221/363 [00:11<00:03, 37.47it/s]
Loading 0: 62%|██████▏ | 226/363 [00:11<00:03, 38.40it/s]
Loading 0: 64%|██████▎ | 231/363 [00:12<00:03, 33.80it/s]
Loading 0: 66%|██████▌ | 238/363 [00:12<00:03, 41.13it/s]
Loading 0: 67%|██████▋ | 243/363 [00:12<00:02, 40.44it/s]
Loading 0: 68%|██████▊ | 248/363 [00:12<00:02, 40.09it/s]
Loading 0: 70%|██████▉ | 253/363 [00:12<00:02, 41.34it/s]
Loading 0: 71%|███████ | 258/363 [00:12<00:03, 34.67it/s]
Loading 0: 73%|███████▎ | 265/363 [00:12<00:02, 41.21it/s]
Loading 0: 74%|███████▍ | 270/363 [00:13<00:02, 40.60it/s]
Loading 0: 76%|███████▌ | 275/363 [00:13<00:02, 40.42it/s]
Loading 0: 77%|███████▋ | 280/363 [00:13<00:02, 41.35it/s]
Loading 0: 79%|███████▊ | 285/363 [00:13<00:03, 25.20it/s]
Loading 0: 80%|████████ | 292/363 [00:13<00:02, 32.49it/s]
Loading 0: 82%|████████▏ | 297/363 [00:13<00:01, 34.36it/s]
Loading 0: 83%|████████▎ | 302/363 [00:14<00:01, 35.73it/s]
Loading 0: 85%|████████▍ | 307/363 [00:14<00:01, 38.13it/s]
Loading 0: 86%|████████▌ | 312/363 [00:14<00:01, 33.11it/s]
Loading 0: 88%|████████▊ | 319/363 [00:14<00:01, 40.41it/s]
Loading 0: 89%|████████▉ | 324/363 [00:14<00:00, 40.52it/s]
Loading 0: 91%|█████████ | 329/363 [00:14<00:00, 41.08it/s]
Loading 0: 92%|█████████▏| 334/363 [00:14<00:00, 42.62it/s]
Loading 0: 93%|█████████▎| 339/363 [00:14<00:00, 35.73it/s]
Loading 0: 95%|█████████▌| 346/363 [00:15<00:00, 42.63it/s]
Loading 0: 97%|█████████▋| 351/363 [00:15<00:00, 42.49it/s]
Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 42.75it/s]
Loading 0: 99%|█████████▉| 361/363 [00:15<00:00, 44.23it/s]
Job chaiml-nemo-chai-4linear-2892-v2-mkmlizer completed after 95.92s with status: succeeded
Stopping job with name chaiml-nemo-chai-4linear-2892-v2-mkmlizer
Pipeline stage MKMLizer completed in 96.73s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.19s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-nemo-chai-4linear-2892-v2
Waiting for inference service chaiml-nemo-chai-4linear-2892-v2 to be ready
Inference service chaiml-nemo-chai-4bio-me-9462-v1 ready after 140.33737325668335s
Pipeline stage MKMLDeployer completed in 140.90s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.1987342834472656s
Received healthy response to inference request in 1.9323327541351318s
Received healthy response to inference request in 1.5732336044311523s
Received healthy response to inference request in 1.4691274166107178s
Received healthy response to inference request in 1.6148619651794434s
5 requests
0 failed requests
5th percentile: 1.4899486541748046
10th percentile: 1.5107698917388916
20th percentile: 1.5524123668670655
30th percentile: 1.5815592765808106
40th percentile: 1.598210620880127
50th percentile: 1.6148619651794434
60th percentile: 1.7418502807617187
70th percentile: 1.8688385963439942
80th percentile: 1.9856130599975585
90th percentile: 2.092173671722412
95th percentile: 2.1454539775848387
99th percentile: 2.1880782222747803
mean time: 1.7576580047607422
Pipeline stage StressChecker completed in 13.92s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 4.18s
Shutdown handler de-registered
chaiml-nemo-chai-4bio-me_9462_v1 status is now deployed due to DeploymentManager action
Inference service chaiml-nemo-chai-4bio-me-9462-v2 ready after 140.3432319164276s
Pipeline stage MKMLDeployer completed in 141.00s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.2852017879486084s
Received healthy response to inference request in 1.5358688831329346s
Received healthy response to inference request in 1.5131876468658447s
Received healthy response to inference request in 2.0912370681762695s
Received healthy response to inference request in 1.4910593032836914s
5 requests
0 failed requests
5th percentile: 1.495484972000122
10th percentile: 1.4999106407165528
20th percentile: 1.5087619781494142
30th percentile: 1.5177238941192628
40th percentile: 1.5267963886260987
50th percentile: 1.5358688831329346
60th percentile: 1.7580161571502686
70th percentile: 1.9801634311676024
80th percentile: 2.1300300121307374
90th percentile: 2.2076159000396727
95th percentile: 2.2464088439941405
99th percentile: 2.2774431991577146
mean time: 1.7833109378814698
Pipeline stage StressChecker completed in 11.57s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 1.96s
Shutdown handler de-registered
chaiml-nemo-chai-4bio-me_9462_v2 status is now deployed due to DeploymentManager action
chaiml-nemo-chai-4bio-me_9462_v2 status is now inactive due to auto deactivation removed underperforming models