developer_uid: azuruce
submission_id: chaiml-mistral-nemo-dpo-_4428_v1
model_name: chaiml-mistral-nemo-dpo-_4428_v1
model_group: ChaiML/mistral_nemo_dpo_
status: inactive
timestamp: 2024-12-19T08:55:37+00:00
num_battles: 11136
num_wins: 5599
celo_rating: 1265.05
family_friendly_score: 0.5740000000000001
family_friendly_standard_error: 0.006993196693930466
submission_type: basic
model_repo: ChaiML/mistral_nemo_dpo_241217_albert_v1-checkpoint-4368
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 4
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6233157687536875, 'latency_mean': 1.6042275893688203, 'latency_p50': 1.6085541248321533, 'latency_p90': 1.7526644706726073}, {'batch_size': 3, 'throughput': 1.253198063963069, 'latency_mean': 2.3873228204250334, 'latency_p50': 2.38077974319458, 'latency_p90': 2.6311941385269164}, {'batch_size': 5, 'throughput': 1.573805982882108, 'latency_mean': 3.151089004278183, 'latency_p50': 3.153028130531311, 'latency_p90': 3.584884428977966}, {'batch_size': 6, 'throughput': 1.6885572848551333, 'latency_mean': 3.5345789730548858, 'latency_p50': 3.521128296852112, 'latency_p90': 4.0054878950119015}, {'batch_size': 8, 'throughput': 1.837533993092385, 'latency_mean': 4.323894975185394, 'latency_p50': 4.344683885574341, 'latency_p90': 4.844839477539063}, {'batch_size': 10, 'throughput': 1.9020480688804582, 'latency_mean': 5.215886896848678, 'latency_p50': 5.192170858383179, 'latency_p90': 5.976225972175598}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: chaiml-mistral-nemo-dpo-_4428_v1
is_internal_developer: True
language_model: ChaiML/mistral_nemo_dpo_241217_albert_v1-checkpoint-4368
model_size: 13B
ranking_group: single
throughput_3p7s: 1.73
us_pacific_date: 2024-12-19
win_ratio: 0.5027837643678161
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 100, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>', '####', 'Bot:', 'User:', 'You:', '<|im_end|>', '<|eot_id|>'], 'max_input_tokens': 1024, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-mistral-nemo-dpo-4428-v1-mkmlizer
Waiting for job on chaiml-mistral-nemo-dpo-4428-v1-mkmlizer to finish
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ _____ __ __ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ /___/ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ Version: 0.11.12 ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ belonging to: ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ║ ║
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: Downloaded to shared memory in 45.048s
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpxaluyrfk, device:0
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: quantized model in 35.573s
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: Processed model ChaiML/mistral_nemo_dpo_241217_albert_v1-checkpoint-4368 in 80.621s
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-mistral-nemo-dpo-4428-v1
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-mistral-nemo-dpo-4428-v1/config.json
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-mistral-nemo-dpo-4428-v1/special_tokens_map.json
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-mistral-nemo-dpo-4428-v1/tokenizer_config.json
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-mistral-nemo-dpo-4428-v1/tokenizer.json
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-mistral-nemo-dpo-4428-v1/flywheel_model.0.safetensors
chaiml-mistral-nemo-dpo-4428-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:12, 28.38it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 49.28it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 44.76it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 44.64it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 51.68it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 49.82it/s] Loading 0: 12%|█▏ | 43/363 [00:00<00:06, 50.32it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:05, 52.42it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 49.86it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 36.77it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 36.67it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.59it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 41.47it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 41.35it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:05, 47.50it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:05, 46.87it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:05, 45.52it/s] Loading 0: 30%|███ | 109/363 [00:02<00:04, 53.72it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 44.24it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 42.34it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:05, 45.48it/s] Loading 0: 36%|███▋ | 132/363 [00:02<00:05, 44.11it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:05, 42.84it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 33.79it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 34.31it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 32.64it/s] Loading 0: 43%|████▎ | 157/363 [00:03<00:05, 39.63it/s] Loading 0: 45%|████▍ | 162/363 [00:03<00:04, 41.98it/s] Loading 0: 46%|████▌ | 167/363 [00:03<00:05, 36.67it/s] Loading 0: 48%|████▊ | 175/363 [00:04<00:04, 44.94it/s] Loading 0: 50%|████▉ | 181/363 [00:04<00:04, 44.23it/s] Loading 0: 51%|█████ | 186/363 [00:04<00:04, 43.60it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 48.36it/s] Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 46.13it/s] Loading 0: 56%|█████▌ | 204/363 [00:04<00:03, 45.00it/s] Loading 0: 58%|█████▊ | 211/363 [00:04<00:03, 50.07it/s] Loading 0: 60%|█████▉ | 217/363 [00:04<00:03, 48.02it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:03, 36.45it/s] Loading 0: 63%|██████▎ | 228/363 [00:05<00:03, 35.59it/s] Loading 0: 64%|██████▍ | 233/363 [00:05<00:03, 38.11it/s] Loading 0: 66%|██████▌ | 239/363 [00:05<00:03, 37.48it/s] Loading 0: 68%|██████▊ | 247/363 [00:05<00:02, 45.45it/s] Loading 0: 70%|██████▉ | 253/363 [00:05<00:02, 44.98it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 44.15it/s] Loading 0: 73%|███████▎ | 265/363 [00:06<00:02, 48.45it/s] Loading 0: 75%|███████▍ | 271/363 [00:06<00:01, 47.14it/s] Loading 0: 76%|███████▌ | 276/363 [00:06<00:01, 45.66it/s] Loading 0: 78%|███████▊ | 282/363 [00:06<00:01, 48.80it/s] Loading 0: 79%|███████▉ | 287/363 [00:06<00:01, 48.88it/s] Loading 0: 80%|████████ | 292/363 [00:06<00:01, 48.75it/s] Loading 0: 82%|████████▏ | 298/363 [00:06<00:01, 46.66it/s] Loading 0: 84%|████████▎ | 304/363 [00:13<00:22, 2.67it/s] Loading 0: 85%|████████▍ | 308/363 [00:13<00:16, 3.39it/s] Loading 0: 86%|████████▌ | 312/363 [00:13<00:11, 4.38it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:05, 7.18it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:03, 9.71it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:02, 12.31it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 17.04it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:00, 20.80it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 24.04it/s] Loading 0: 98%|█████████▊| 356/363 [00:14<00:00, 30.35it/s] Loading 0: 100%|█████████▉| 362/363 [00:14<00:00, 32.34it/s]
Job chaiml-mistral-nemo-dpo-4428-v1-mkmlizer completed after 104.48s with status: succeeded
Stopping job with name chaiml-mistral-nemo-dpo-4428-v1-mkmlizer
Pipeline stage MKMLizer completed in 105.02s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.73s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-mistral-nemo-dpo-4428-v1
Waiting for inference service chaiml-mistral-nemo-dpo-4428-v1 to be ready
Inference service chaiml-mistral-nemo-dpo-4428-v1 ready after 251.28546333312988s
Pipeline stage MKMLDeployer completed in 251.89s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.453547477722168s
Received healthy response to inference request in 0.734004020690918s
Received healthy response to inference request in 0.4104940891265869s
Received healthy response to inference request in 1.3093109130859375s
Received healthy response to inference request in 1.3490607738494873s
5 requests
0 failed requests
5th percentile: 0.47519607543945314
10th percentile: 0.5398980617523194
20th percentile: 0.6693020343780518
30th percentile: 0.8490653991699219
40th percentile: 1.0791881561279297
50th percentile: 1.3093109130859375
60th percentile: 1.3252108573913575
70th percentile: 1.3411108016967774
80th percentile: 1.3699581146240234
90th percentile: 1.4117527961730958
95th percentile: 1.4326501369476319
99th percentile: 1.4493680095672608
mean time: 1.0512834548950196
Pipeline stage StressChecker completed in 6.67s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.51s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.30s
Shutdown handler de-registered
chaiml-mistral-nemo-dpo-_4428_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.09s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-mistral-nemo-dpo-4428-v1-profiler
Waiting for inference service chaiml-mistral-nemo-dpo-4428-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3046.87s
Shutdown handler de-registered
chaiml-mistral-nemo-dpo-_4428_v1 status is now inactive due to auto deactivation removed underperforming models