Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-llama31-mer-v2-44570-v23-mkmlizer
Waiting for job on chaiml-llama31-mer-v2-44570-v23-mkmlizer to finish
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ Version: 0.30.2 ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ https://mk1.ai ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ belonging to: ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ Chai Research Corp. ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ║ ║
chaiml-llama31-mer-v2-44570-v23-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-llama31-mer-v2-44570-v23-mkmlizer: Downloaded to shared memory in 9.450s
chaiml-llama31-mer-v2-44570-v23-mkmlizer: Checking if ChaiML/llama31-mer-v2-try1-new8m-filterv3-full-512seq-bestep-572 already exists in ChaiML
chaiml-llama31-mer-v2-44570-v23-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpyrvd_qxl, device:0
chaiml-llama31-mer-v2-44570-v23-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-llama31-mer-v2-44570-v23-mkmlizer: quantized model in 16.055s
chaiml-llama31-mer-v2-44570-v23-mkmlizer: Processed model ChaiML/llama31-mer-v2-try1-new8m-filterv3-full-512seq-bestep-572 in 25.505s
chaiml-llama31-mer-v2-44570-v23-mkmlizer: creating bucket guanaco-mkml-models
chaiml-llama31-mer-v2-44570-v23-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-llama31-mer-v2-44570-v23-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-llama31-mer-v2-44570-v23/nvidia
chaiml-llama31-mer-v2-44570-v23-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-llama31-mer-v2-44570-v23/nvidia/config.json
chaiml-llama31-mer-v2-44570-v23-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-llama31-mer-v2-44570-v23/nvidia/special_tokens_map.json
chaiml-llama31-mer-v2-44570-v23-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-llama31-mer-v2-44570-v23/nvidia/tokenizer_config.json
chaiml-llama31-mer-v2-44570-v23-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-llama31-mer-v2-44570-v23/nvidia/tokenizer.json
chaiml-llama31-mer-v2-44570-v23-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-llama31-mer-v2-44570-v23/nvidia/flywheel_model.0.safetensors
chaiml-llama31-mer-v2-44570-v23-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 2%|▏ | 5/291 [00:00<00:07, 40.55it/s]
Loading 0: 5%|▍ | 14/291 [00:00<00:05, 54.96it/s]
Loading 0: 8%|▊ | 23/291 [00:00<00:04, 59.42it/s]
Loading 0: 11%|█ | 32/291 [00:00<00:04, 60.09it/s]
Loading 0: 14%|█▍ | 41/291 [00:00<00:04, 61.03it/s]
Loading 0: 17%|█▋ | 50/291 [00:00<00:03, 61.58it/s]
Loading 0: 20%|██ | 59/291 [00:00<00:03, 61.77it/s]
Loading 0: 23%|██▎ | 68/291 [00:01<00:03, 61.12it/s]
Loading 0: 26%|██▋ | 77/291 [00:01<00:03, 61.51it/s]
Loading 0: 29%|██▉ | 84/291 [00:01<00:04, 49.98it/s]
Loading 0: 31%|███ | 90/291 [00:01<00:03, 52.02it/s]
Loading 0: 33%|███▎ | 96/291 [00:01<00:03, 50.04it/s]
Loading 0: 36%|███▌ | 104/291 [00:01<00:03, 50.89it/s]
Loading 0: 39%|███▉ | 113/291 [00:02<00:03, 53.64it/s]
Loading 0: 42%|████▏ | 122/291 [00:02<00:03, 55.68it/s]
Loading 0: 45%|████▌ | 131/291 [00:02<00:02, 57.55it/s]
Loading 0: 48%|████▊ | 140/291 [00:02<00:02, 58.11it/s]
Loading 0: 51%|█████ | 149/291 [00:02<00:02, 59.30it/s]
Loading 0: 54%|█████▍ | 158/291 [00:02<00:02, 60.08it/s]
Loading 0: 57%|█████▋ | 167/291 [00:02<00:02, 60.70it/s]
Loading 0: 61%|██████ | 177/291 [00:03<00:01, 65.86it/s]
Loading 0: 63%|██████▎ | 184/291 [00:03<00:01, 65.40it/s]
Loading 0: 66%|██████▌ | 191/291 [00:03<00:02, 45.93it/s]
Loading 0: 68%|██████▊ | 197/291 [00:03<00:01, 48.32it/s]
Loading 0: 70%|██████▉ | 203/291 [00:03<00:01, 46.45it/s]
Loading 0: 73%|███████▎ | 212/291 [00:03<00:01, 50.19it/s]
Loading 0: 76%|███████▌ | 221/291 [00:03<00:01, 51.73it/s]
Loading 0: 79%|███████▉ | 230/291 [00:04<00:01, 53.70it/s]
Loading 0: 82%|████████▏ | 239/291 [00:04<00:00, 55.76it/s]
Loading 0: 85%|████████▌ | 248/291 [00:04<00:00, 57.49it/s]
Loading 0: 88%|████████▊ | 257/291 [00:04<00:00, 58.59it/s]
Loading 0: 91%|█████████▏| 266/291 [00:04<00:00, 59.13it/s]
Loading 0: 95%|█████████▍| 275/291 [00:04<00:00, 59.86it/s]
Loading 0: 97%|█████████▋| 282/291 [00:05<00:00, 58.28it/s]
Loading 0: 99%|█████████▉| 288/291 [00:05<00:00, 46.80it/s]
Job chaiml-llama31-mer-v2-44570-v23-mkmlizer completed after 53.22s with status: succeeded
Stopping job with name chaiml-llama31-mer-v2-44570-v23-mkmlizer
Pipeline stage MKMLizer completed in 53.63s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-llama31-mer-v2-44570-v23
Waiting for inference service chaiml-llama31-mer-v2-44570-v23 to be ready
HTTP Request: %s %s "%s %d %s"
Inference service chaiml-llama31-mer-v2-44570-v23 ready after 90.13928365707397s
Pipeline stage MKMLDeployer completed in 90.56s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.2101104259490967s
Received healthy response to inference request in 2.387282609939575s
Received healthy response to inference request in 2.2243075370788574s
Received healthy response to inference request in 1.5974037647247314s
Received healthy response to inference request in 2.6033859252929688s
5 requests
0 failed requests
5th percentile: 1.7227845191955566
10th percentile: 1.8481652736663818
20th percentile: 2.0989267826080322
30th percentile: 2.256902551651001
40th percentile: 2.322092580795288
50th percentile: 2.387282609939575
60th percentile: 2.4737239360809324
70th percentile: 2.56016526222229
80th percentile: 2.7247308254241944
90th percentile: 2.9674206256866453
95th percentile: 3.088765525817871
99th percentile: 3.1858414459228515
mean time: 2.404498052597046
Pipeline stage StressChecker completed in 13.15s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.61s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.64s
Shutdown handler de-registered
chaiml-llama31-mer-v2-_44570_v23 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.91s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama31-mer-v2-44570-v23-profiler
Waiting for inference service chaiml-llama31-mer-v2-44570-v23-profiler to be ready
Inference service chaiml-llama31-mer-v2-44570-v23-profiler ready after 100.69006538391113s
Pipeline stage MKMLProfilerDeployer completed in 101.36s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplottnv7:/code/chaiverse_profiler_1757457116 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplottnv7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757457116 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757457116/summary.json'
%s, retrying in %s seconds...
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplottnv7:/code/chaiverse_profiler_1757457597 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplottnv7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757457597 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757457597/summary.json'
%s, retrying in %s seconds...
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplottnv7:/code/chaiverse_profiler_1757458067 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplottnv7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757458067 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757458067/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Unable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<01:04, 3.07it/s]\n 1%| | 2/200 [00:04<08:33, 2.59s/it]\n 2%|▏ | 3/200 [00:08<10:29, 3.20s/it]\n 2%|▏ | 4/200 [00:12<11:31, 3.53s/it]\n 2%|▎ | 5/200 [00:16<12:03, 3.71s/it]\n 3%|▎ | 6/200 [00:20<12:20, 3.82s/it]\n 4%|▎ | 7/200 [00:24<12:29, 3.89s/it]\n 4%|▍ | 8/200 [00:28<12:28, 3.90s/it]\n 4%|▍ | 9/200 [00:28<08:54, 2.80s/it]\n 5%|▌ | 10/200 [00:29<06:31, 2.06s/it]\n 6%|▌ | 11/200 [00:33<08:18, 2.64s/it]\n 6%|▌ | 12/200 [00:37<09:34, 3.05s/it]\n 6%|▋ | 13/200 [00:41<10:25, 3.34s/it]\n 7%|▋ | 14/200 [00:45<10:57, 3.54s/it]\n 8%|▊ | 15/200 [00:49<11:20, 3.68s/it]\n 8%|▊ | 16/200 [00:53<11:33, 3.77s/it]\n 8%|▊ | 17/200 [00:53<08:18, 2.72s/it]\n 9%|▉ | 18/200 [00:53<06:09, 2.03s/it]\n 10%|▉ | 19/200 [00:57<07:55, 2.62s/it]\n 10%|█ | 20/200 [01:01<09:01, 3.01s/it]\n 10%|█ | 21/200 [01:05<09:50, 3.30s/it]\n 11%|█ | 22/200 [01:09<10:22, 3.50s/it]\n 12%|█▏ | 23/200 [01:10<07:33, 2.56s/it]\n 12%|█▏ | 24/200 [01:10<05:33, 1.89s/it]\n 12%|█▎ | 25/200 [01:14<07:20, 2.52s/it]\n 13%|█▎ | 26/200 [01:14<05:27, 1.88s/it]\n 14%|█▎ | 27/200 [01:18<07:16, 2.52s/it]\n 14%|█▍ | 28/200 [01:22<08:27, 2.95s/it]\n 14%|█▍ | 29/200 [01:26<09:17, 3.26s/it]\n 15%|█▌ | 30/200 [01:30<09:51, 3.48s/it]\n 16%|█▌ | 31/200 [01:34<10:12, 3.62s/it]\n 16%|█▌ | 32/200 [01:35<07:20, 2.62s/it]\n 16%|█▋ | 33/200 [01:35<05:25, 1.95s/it]\n 17%|█▋ | 34/200 [01:39<07:06, 2.57s/it]\n 18%|█▊ | 35/200 [01:43<08:14, 3.00s/it]\n 18%|█▊ | 36/200 [01:47<08:55, 3.27s/it]\n 18%|█▊ | 37/200 [01:47<06:32, 2.41s/it]\n 19%|█▉ | 38/200 [01:51<07:48, 2.89s/it]\n 20%|█▉ | 39/200 [01:55<08:34, 3.20s/it]\n 20%|██ | 40/200 [01:59<09:08, 3.43s/it]\n 20%|██ | 41/200 [01:59<06:39, 2.51s/it]\n 21%|██ | 42/200 [02:00<04:53, 1.86s/it]\n 22%|██▏ | 43/200 [02:04<06:32, 2.50s/it]\n 22%|██▏ | 44/200 [02:08<07:38, 2.94s/it]\n 22%|██▎ | 45/200 [02:12<08:23, 3.25s/it]\n 23%|██▎ | 46/200 [02:16<08:55, 3.47s/it]\n 24%|██▎ | 47/200 [02:16<06:25, 2.52s/it]\n 24%|██▍ | 48/200 [02:20<07:30, 2.96s/it]\n 24%|██▍ | 49/200 [02:20<05:26, 2.16s/it]\n 25%|██▌ | 50/200 [02:24<06:46, 2.71s/it]\n 26%|██▌ | 51/200 [02:28<07:40, 3.09s/it]\n 26%|██▌ | 52/200 [02:32<08:17, 3.36s/it]\n 26%|██▋ | 53/200 [02:36<08:49, 3.60s/it]\n 27%|██▋ | 54/200 [02:40<08:58, 3.69s/it]\n 28%|██▊ | 55/200 [02:44<09:07, 3.77s/it]\n 28%|██▊ | 56/200 [02:45<06:36, 2.75s/it]\n 28%|██▊ | 57/200 [02:45<04:48, 2.02s/it]\n 29%|██▉ | 58/200 [02:49<06:10, 2.61s/it]\n 30%|██▉ | 59/200 [02:53<07:05, 3.02s/it]\n 30%|███ | 60/200 [02:57<07:42, 3.31s/it]\n 30%|███ | 61/200 [03:01<08:08, 3.52s/it]\n 31%|███ | 62/200 [03:01<05:51, 2.55s/it]\n 32%|███▏ | 63/200 [03:02<04:21, 1.91s/it]\n 32%|███▏ | 64/200 [03:02<03:14, 1.43s/it]\n 32%|███▎ | 65/200 [03:02<02:31, 1.12s/it]\n 33%|███▎ | 66/200 [03:03<01:57, 1.14it/s]\n 34%|███▎ | 67/200 [03:07<04:01, 1.82s/it]\n 34%|███▍ | 68/200 [03:07<03:03, 1.39s/it]\n 34%|███▍ | 69/200 [03:07<02:19, 1.06s/it]\n 35%|███▌ | 70/200 [03:11<04:13, 1.95s/it]\n 36%|███▌ | 71/200 [03:15<05:30, 2.56s/it]\n 36%|███▌ | 72/200 [03:19<06:18, 2.96s/it]\n 36%|███▋ | 73/200 [03:23<06:53, 3.25s/it]\n 37%|███▋ | 74/200 [03:27<07:22, 3.51s/it]\n 38%|███▊ | 75/200 [03:28<05:17, 2.54s/it]\n 38%|███▊ | 76/200 [03:32<06:09, 2.98s/it]\n 38%|███▊ | 77/200 [03:36<06:49, 3.33s/it]\n 39%|███▉ | 78/200 [03:40<07:09, 3.52s/it]\n 40%|███▉ | 79/200 [03:40<05:12, 2.58s/it]\n 40%|████ | 80/200 [03:44<06:02, 3.02s/it]\n 40%|████ | 81/200 [03:45<04:25, 2.23s/it]\n 41%|████ | 82/200 [03:45<03:15, 1.66s/it]\n 42%|████▏ | 83/200 [03:49<04:37, 2.37s/it]\n 42%|████▏ | 84/200 [03:49<03:26, 1.78s/it]\n 42%|████▎ | 85/200 [03:53<04:39, 2.43s/it]\n 43%|████▎ | 86/200 [03:54<03:27, 1.82s/it]\n 44%|████▎ | 87/200 [03:58<04:41, 2.49s/it]\n 44%|████▍ | 88/200 [04:02<05:26, 2.92s/it]\n 44%|████▍ | 89/200 [04:06<05:59, 3.24s/it]\n 45%|████▌ | 90/200 [04:10<06:22, 3.47s/it]\n 46%|████▌ | 91/200 [04:14<06:36, 3.64s/it]\n 46%|████▌ | 92/200 [04:14<04:45, 2.64s/it]\n 46%|████▋ | 93/200 [04:18<05:28, 3.07s/it]\n 47%|████▋ | 94/200 [04:22<05:54, 3.35s/it]\n 48%|████▊ | 95/200 [04:26<06:08, 3.51s/it]\n 48%|████▊ | 96/200 [04:30<06:19, 3.65s/it]\n 48%|████▊ | 97/200 [04:30<04:35, 2.68s/it]\n 49%|████▉ | 98/200 [04:31<03:20, 1.97s/it]\n 50%|████▉ | 99/200 [04:31<02:31, 1.50s/it]\n 50%|█████ | 100/200 [04:31<01:56, 1.17s/it]\n 50%|█████ | 101/200 [04:35<03:20, 2.02s/it]\n 51%|█████ | 102/200 [04:36<02:27, 1.51s/it]\n 52%|█████▏ | 103/200 [04:40<03:38, 2.25s/it]\n 52%|█████▏ | 104/200 [04:40<02:42, 1.70s/it]\n 52%|█████▎ | 105/200 [04:44<03:47, 2.39s/it]\n 53%|█████▎ | 106/200 [04:44<02:45, 1.76s/it]\n 54%|█████▎ | 107/200 [04:45<02:05, 1.35s/it]\n 54%|█████▍ | 108/200 [04:45<01:36, 1.04s/it]\n 55%|█████▍ | 109/200 [04:46<01:17, 1.17it/s]\n 55%|█████▌ | 110/200 [04:46<01:02, 1.45it/s]\n 56%|█████▌ | 111/200 [04:46<00:53, 1.66it/s]\n 56%|█████▌ | 112/200 [04:50<02:23, 1.63s/it]\n 56%|█████▋ | 113/200 [04:51<01:49, 1.26s/it]\n 57%|█████▋ | 114/200 [04:55<03:02, 2.12s/it]\n 57%|█████▊ | 115/200 [04:59<03:45, 2.66s/it]\n 58%|█████▊ | 116/200 [05:03<04:16, 3.05s/it]\n 58%|█████▊ | 117/200 [05:03<03:06, 2.24s/it]\n 59%|█████▉ | 118/200 [05:07<03:48, 2.78s/it]\n 60%|█████▉ | 119/200 [05:07<02:44, 2.04s/it]\n 60%|██████ | 120/200 [05:08<02:03, 1.55s/it]\n 60%|██████ | 121/200 [05:12<02:59, 2.27s/it]\n 61%|██████ | 122/200 [05:12<02:12, 1.70s/it]\n 62%|██████▏ | 123/200 [05:16<03:05, 2.40s/it]\n 62%|██████▏ | 124/200 [05:17<02:17, 1.80s/it]\n 62%|██████▎ | 125/200 [05:17<01:42, 1.36s/it]\n 63%|██████▎ | 126/200 [05:17<01:20, 1.08s/it]\n 64%|██████▎ | 127/200 [05:21<02:23, 1.96s/it]\n 64%|██████▍ | 128/200 [05:25<03:02, 2.54s/it]\n 64%|██████▍ | 129/200 [05:29<03:30, 2.97s/it]\n 65%|██████▌ | 130/200 [05:30<02:33, 2.19s/it]\n 66%|██████▌ | 131/200 [05:34<03:09, 2.75s/it]\n 66%|██████▌ | 132/200 [05:38<03:30, 3.09s/it]\n 66%|██████▋ | 133/200 [05:41<03:44, 3.35s/it]\n 67%|██████▋ | 134/200 [05:42<02:42, 2.46s/it]\n 68%|██████▊ | 135/200 [05:42<01:58, 1.82s/it]\n 68%|██████▊ | 136/200 [05:46<02:38, 2.47s/it]\n 68%|██████▊ | 137/200 [05:50<03:04, 2.93s/it]\n 69%|██████▉ | 138/200 [05:54<03:21, 3.24s/it]\n 70%|██████▉ | 139/200 [05:58<03:32, 3.48s/it]\n 70%|███████ | 140/200 [05:58<02:31, 2.52s/it]\n 70%|███████ | 141/200 [06:02<02:55, 2.98s/it]\n 71%|███████ | 142/200 [06:03<02:05, 2.17s/it]\n 72%|███████▏ | 143/200 [06:03<01:33, 1.64s/it]\n 72%|███████▏ | 144/200 [06:07<02:11, 2.35s/it]\n 72%|███████▎ | 145/200 [06:08<01:35, 1.74s/it]\n 73%|███████▎ | 146/200 [06:12<02:12, 2.45s/it]\n 74%|███████▎ | 147/200 [06:16<02:32, 2.88s/it]\n 74%|███████▍ | 148/200 [06:19<02:46, 3.21s/it]\n 74%|███████▍ | 149/200 [06:23<02:55, 3.45s/it]\n 75%|███████▌ | 150/200 [06:28<03:01, 3.63s/it]\n 76%|███████▌ | 151/200 [06:32<03:03, 3.74s/it]\n 76%|███████▌ | 152/200 [06:36<03:03, 3.81s/it]\n 76%|███████▋ | 153/200 [06:39<03:00, 3.83s/it]\n 77%|███████▋ | 154/200 [06:43<02:58, 3.88s/it]\n 78%|███████▊ | 155/200 [06:44<02:07, 2.83s/it]\n 78%|███████▊ | 156/200 [06:48<02:20, 3.18s/it]\n 78%|███████▊ | 157/200 [06:48<01:39, 2.31s/it]\n 79%|███████▉ | 158/200 [06:52<01:58, 2.82s/it]\n 80%|███████▉ | 159/200 [06:56<02:09, 3.17s/it]\n 80%|████████ | 160/200 [07:00<02:16, 3.42s/it]\n 80%|████████ | 161/200 [07:04<02:19, 3.57s/it]\n 81%|████████ | 162/200 [07:08<02:20, 3.69s/it]\n 82%|████████▏ | 163/200 [07:12<02:19, 3.78s/it]\n 82%|████████▏ | 164/200 [07:16<02:18, 3.86s/it]\n 82%|████████▎ | 165/200 [07:20<02:16, 3.90s/it]\n 83%|████████▎ | 166/200 [07:20<01:35, 2.82s/it]\n 84%|████████▎ | 167/200 [07:24<01:44, 3.17s/it]\n 84%|████████▍ | 168/200 [07:28<01:49, 3.42s/it]\n 84%|████████▍ | 169/200 [07:29<01:16, 2.48s/it]\n 85%|████████▌ | 170/200 [07:33<01:28, 2.94s/it]\n 86%|████████▌ | 171/200 [07:37<01:34, 3.26s/it]\n 86%|████████▌ | 172/200 [07:40<01:36, 3.45s/it]\n 86%|████████▋ | 173/200 [07:41<01:08, 2.53s/it]\n 87%|████████▋ | 174/200 [07:45<01:17, 2.96s/it]\n 88%|████████▊ | 175/200 [07:49<01:21, 3.27s/it]\n 88%|████████▊ | 176/200 [07:49<00:57, 2.38s/it]\n 88%|████████▊ | 177/200 [07:53<01:06, 2.89s/it]\n 89%|████████▉ | 178/200 [07:53<00:46, 2.11s/it]\n 90%|████████▉ | 179/200 [07:57<00:56, 2.68s/it]\n 90%|█████████ | 180/200 [08:01<01:01, 3.08s/it]\n 90%|█████████ | 181/200 [08:05<01:03, 3.32s/it]\n 91%|█████████ | 182/200 [08:06<00:43, 2.44s/it]\n 92%|█████████▏| 183/200 [08:10<00:49, 2.90s/it]\n 92%|█████████▏| 184/200 [08:14<00:51, 3.23s/it]\n 92%|█████████▎| 185/200 [08:18<00:51, 3.43s/it]\n 93%|█████████▎| 186/200 [08:22<00:50, 3.59s/it]\n 94%|█████████▎| 187/200 [08:26<00:48, 3.70s/it]\n 94%|█████████▍| 188/200 [08:30<00:45, 3.78s/it]\n 94%|█████████▍| 189/200 [08:30<00:30, 2.74s/it]\n 95%|█████████▌| 190/200 [08:30<00:20, 2.03s/it]\n 96%|█████████▌| 191/200 [08:34<00:23, 2.62s/it]\n 96%|█████████▌| 192/200 [08:38<00:24, 3.03s/it]\n 96%|█████████▋| 193/200 [08:38<00:15, 2.21s/it]\n 97%|█████████▋| 194/200 [08:39<00:09, 1.66s/it]\n 98%|█████████▊| 195/200 [08:43<00:11, 2.37s/it]\n 98%|█████████▊| 196/200 [08:47<00:11, 2.85s/it]\n 98%|█████████▊| 197/200 [08:51<00:09, 3.19s/it]\n 99%|█████████▉| 198/200 [08:51<00:04, 2.32s/it]\n100%|█████████▉| 199/200 [08:55<00:02, 2.83s/it]\n100%|██████████| 200/200 [08:55<00:00, 2.07s/it]\n100%|██████████| 200/200 [08:55<00:00, 2.68s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1757458067/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1757458067/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1757458067/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1757458067/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 535.9404385089874\nerrors 72\nmean length: 1.92\n\nthroughput (request / second): 0.373175796467999\nthroughput (character / second): 0.716497529218558\naverage request duration (s) 2.679603412151337\n50%ile request duration (s) 3.964500308036804\n75%ile request duration (s) 4.002192795276642\n90%ile request duration (s) 4.032052826881409\n95%ile request duration (s) 4.060066974163055\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama31-mer-v2-44570-v23-profiler is running
Tearing down inference service chaiml-llama31-mer-v2-44570-v23-profiler
Service chaiml-llama31-mer-v2-44570-v23-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 0.89s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama31-mer-v2-44570-v23-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 0.98s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama31-mer-v2-44570-v23-profiler
Waiting for inference service chaiml-llama31-mer-v2-44570-v23-profiler to be ready
Inference service chaiml-llama31-mer-v2-44570-v23-profiler ready after 120.77578258514404s
Pipeline stage MKMLProfilerDeployer completed in 121.24s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deploht7s9:/code/chaiverse_profiler_1757458802 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deploht7s9 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757458802 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757458802/summary.json'
%s, retrying in %s seconds...
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deploht7s9:/code/chaiverse_profiler_1757459327 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deploht7s9 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757459327 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757459327/summary.json'
%s, retrying in %s seconds...
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deploht7s9:/code/chaiverse_profiler_1757459835 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deploht7s9 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757459835 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757459835/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Unable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<01:14, 2.65it/s]\n 1%| | 2/200 [00:04<08:10, 2.48s/it]\n 2%|▏ | 3/200 [00:04<05:00, 1.52s/it]\n 2%|▏ | 4/200 [00:08<08:03, 2.47s/it]\n 2%|▎ | 5/200 [00:09<05:34, 1.71s/it]\n 3%|▎ | 6/200 [00:13<08:03, 2.49s/it]\n 4%|▎ | 7/200 [00:17<09:36, 2.99s/it]\n 4%|▍ | 8/200 [00:20<10:28, 3.27s/it]\n 4%|▍ | 9/200 [00:21<07:33, 2.37s/it]\n 5%|▌ | 10/200 [00:25<09:05, 2.87s/it]\n 6%|▌ | 11/200 [00:29<10:07, 3.22s/it]\n 6%|▌ | 12/200 [00:33<10:43, 3.42s/it]\n 6%|▋ | 13/200 [00:37<11:10, 3.59s/it]\n 7%|▋ | 14/200 [00:41<11:29, 3.71s/it]\n 8%|▊ | 15/200 [00:41<08:20, 2.70s/it]\n 8%|▊ | 16/200 [00:45<09:24, 3.07s/it]\n 8%|▊ | 17/200 [00:45<06:54, 2.26s/it]\n 9%|▉ | 18/200 [00:46<05:09, 1.70s/it]\n 10%|▉ | 19/200 [00:46<03:53, 1.29s/it]\n 10%|█ | 20/200 [00:46<03:04, 1.02s/it]\n 10%|█ | 21/200 [00:50<05:37, 1.89s/it]\n 11%|█ | 22/200 [00:54<07:27, 2.51s/it]\n 12%|█▏ | 23/200 [00:55<05:32, 1.88s/it]\n 12%|█▏ | 24/200 [00:59<07:25, 2.53s/it]\n 12%|█▎ | 25/200 [00:59<05:25, 1.86s/it]\n 13%|█▎ | 26/200 [01:03<07:17, 2.51s/it]\n 14%|█▎ | 27/200 [01:07<08:37, 2.99s/it]\n 14%|█▍ | 28/200 [01:08<06:20, 2.21s/it]\n 14%|█▍ | 29/200 [01:08<04:41, 1.64s/it]\n 15%|█▌ | 30/200 [01:12<06:40, 2.36s/it]\n 16%|█▌ | 31/200 [01:16<08:02, 2.86s/it]\n 16%|█▌ | 32/200 [01:20<08:52, 3.17s/it]\n 16%|█▋ | 33/200 [01:20<06:29, 2.33s/it]\n 17%|█▋ | 34/200 [01:24<07:52, 2.84s/it]\n 18%|█▊ | 35/200 [01:28<08:46, 3.19s/it]\n 18%|█▊ | 36/200 [01:32<09:24, 3.44s/it]\n 18%|█▊ | 37/200 [01:36<09:43, 3.58s/it]\n 19%|█▉ | 38/200 [01:40<09:58, 3.69s/it]\n 20%|█▉ | 39/200 [01:44<10:09, 3.78s/it]\n 20%|██ | 40/200 [01:48<10:14, 3.84s/it]\n 20%|██ | 41/200 [01:52<10:17, 3.88s/it]\n 21%|██ | 42/200 [01:52<07:23, 2.81s/it]\n 22%|██▏ | 43/200 [01:56<08:16, 3.17s/it]\n 22%|██▏ | 44/200 [01:57<05:59, 2.30s/it]\n 22%|██▎ | 45/200 [02:01<07:20, 2.84s/it]\n 23%|██▎ | 46/200 [02:05<08:05, 3.15s/it]\n 24%|██▎ | 47/200 [02:09<08:39, 3.40s/it]\n 24%|██▍ | 48/200 [02:13<09:03, 3.57s/it]\n 24%|██▍ | 49/200 [02:17<09:17, 3.69s/it]\n 25%|██▌ | 50/200 [02:21<09:27, 3.79s/it]\n 26%|██▌ | 51/200 [02:21<06:48, 2.74s/it]\n 26%|██▌ | 52/200 [02:21<05:03, 2.05s/it]\n 26%|██▋ | 53/200 [02:26<06:35, 2.69s/it]\n 27%|██▋ | 54/200 [02:26<04:47, 1.97s/it]\n 28%|██▊ | 55/200 [02:30<06:16, 2.60s/it]\n 28%|██▊ | 56/200 [02:34<07:14, 3.01s/it]\n 28%|██▊ | 57/200 [02:34<05:14, 2.20s/it]\n 29%|██▉ | 58/200 [02:35<03:56, 1.66s/it]\n 30%|██▉ | 59/200 [02:39<05:34, 2.37s/it]\n 30%|███ | 60/200 [02:42<06:35, 2.82s/it]\n 30%|███ | 61/200 [02:46<07:20, 3.17s/it]\n 31%|███ | 62/200 [02:50<07:51, 3.42s/it]\n 32%|███▏ | 63/200 [02:51<05:39, 2.48s/it]\n 32%|███▏ | 64/200 [02:55<06:38, 2.93s/it]\n 32%|███▎ | 65/200 [02:59<07:18, 3.24s/it]\n 33%|███▎ | 66/200 [02:59<05:19, 2.38s/it]\n 34%|███▎ | 67/200 [02:59<03:55, 1.77s/it]\n 34%|███▍ | 68/200 [03:03<05:23, 2.45s/it]\n 34%|███▍ | 69/200 [03:07<06:23, 2.93s/it]\n 35%|███▌ | 70/200 [03:11<06:58, 3.22s/it]\n 36%|███▌ | 71/200 [03:16<07:31, 3.50s/it]\n 36%|███▌ | 72/200 [03:16<05:24, 2.53s/it]\n 36%|███▋ | 73/200 [03:16<04:00, 1.90s/it]\n 37%|███▋ | 74/200 [03:17<02:58, 1.42s/it]\n 38%|███▊ | 75/200 [03:21<04:35, 2.20s/it]\n 38%|███▊ | 76/200 [03:25<05:41, 2.76s/it]\n 38%|███▊ | 77/200 [03:29<06:30, 3.17s/it]\n 39%|███▉ | 78/200 [03:33<06:54, 3.40s/it]\n 40%|███▉ | 79/200 [03:33<05:01, 2.50s/it]\n 40%|████ | 80/200 [03:37<05:55, 2.96s/it]\n 40%|████ | 81/200 [03:37<04:18, 2.17s/it]\n 41%|████ | 82/200 [03:42<05:25, 2.76s/it]\n 42%|████▏ | 83/200 [03:45<06:01, 3.09s/it]\n 42%|████▏ | 84/200 [03:49<06:30, 3.37s/it]\n 42%|████▎ | 85/200 [03:53<06:48, 3.55s/it]\n 43%|████▎ | 86/200 [03:54<04:56, 2.60s/it]\n 44%|████▎ | 87/200 [03:58<05:43, 3.04s/it]\n 44%|████▍ | 88/200 [04:02<06:08, 3.29s/it]\n 44%|████▍ | 89/200 [04:02<04:28, 2.42s/it]\n 45%|████▌ | 90/200 [04:06<05:18, 2.90s/it]\n 46%|████▌ | 91/200 [04:10<05:52, 3.24s/it]\n 46%|████▌ | 92/200 [04:10<04:14, 2.35s/it]\n 46%|████▋ | 93/200 [04:15<05:05, 2.86s/it]\n 47%|████▋ | 94/200 [04:15<03:41, 2.09s/it]\n 48%|████▊ | 95/200 [04:15<02:47, 1.59s/it]\n 48%|████▊ | 96/200 [04:19<04:01, 2.32s/it]\n 48%|████▊ | 97/200 [04:20<02:56, 1.71s/it]\n 49%|████▉ | 98/200 [04:20<02:14, 1.31s/it]\n 50%|████▉ | 99/200 [04:20<01:44, 1.04s/it]\n 50%|█████ | 100/200 [04:24<03:14, 1.95s/it]\n 50%|█████ | 101/200 [04:25<02:24, 1.46s/it]\n 51%|█████ | 102/200 [04:25<01:52, 1.15s/it]\n 52%|█████▏ | 103/200 [04:29<03:13, 1.99s/it]\n 52%|█████▏ | 104/200 [04:30<02:25, 1.52s/it]\n 52%|█████▎ | 105/200 [04:34<03:36, 2.28s/it]\n 53%|█████▎ | 106/200 [04:38<04:24, 2.81s/it]\n 54%|█████▎ | 107/200 [04:38<03:11, 2.06s/it]\n 54%|█████▍ | 108/200 [04:42<04:08, 2.70s/it]\n 55%|█████▍ | 109/200 [04:42<02:59, 1.97s/it]\n 55%|█████▌ | 110/200 [04:46<03:53, 2.59s/it]\n 56%|█████▌ | 111/200 [04:47<02:49, 1.91s/it]\n 56%|█████▌ | 112/200 [04:51<03:46, 2.57s/it]\n 56%|█████▋ | 113/200 [04:51<02:44, 1.89s/it]\n 57%|█████▋ | 114/200 [04:55<03:40, 2.57s/it]\n 57%|█████▊ | 115/200 [04:59<04:16, 3.02s/it]\n 58%|█████▊ | 116/200 [05:00<03:04, 2.20s/it]\n 58%|█████▊ | 117/200 [05:00<02:18, 1.66s/it]\n 59%|█████▉ | 118/200 [05:00<01:43, 1.26s/it]\n 60%|█████▉ | 119/200 [05:04<02:49, 2.09s/it]\n 60%|██████ | 120/200 [05:09<03:34, 2.68s/it]\n 60%|██████ | 121/200 [05:13<04:03, 3.08s/it]\n 61%|██████ | 122/200 [05:16<04:19, 3.33s/it]\n 62%|██████▏ | 123/200 [05:17<03:08, 2.44s/it]\n 62%|██████▏ | 124/200 [05:17<02:19, 1.84s/it]\n 62%|██████▎ | 125/200 [05:21<03:05, 2.47s/it]\n 63%|██████▎ | 126/200 [05:22<02:16, 1.84s/it]\n 64%|██████▎ | 127/200 [05:26<03:02, 2.49s/it]\n 64%|██████▍ | 128/200 [05:30<03:32, 2.95s/it]\n 64%|██████▍ | 129/200 [05:34<03:53, 3.28s/it]\n 65%|██████▌ | 130/200 [05:34<02:47, 2.39s/it]\n 66%|██████▌ | 131/200 [05:38<03:18, 2.88s/it]\n 66%|██████▌ | 132/200 [05:42<03:38, 3.21s/it]\n 66%|██████▋ | 133/200 [05:46<03:49, 3.43s/it]\n 67%|██████▋ | 134/200 [05:50<03:58, 3.61s/it]\n 68%|██████▊ | 135/200 [05:50<02:51, 2.64s/it]\n 68%|██████▊ | 136/200 [05:51<02:04, 1.94s/it]\n 68%|██████▊ | 137/200 [05:55<02:41, 2.57s/it]\n 69%|██████▉ | 138/200 [05:59<03:07, 3.02s/it]\n 70%|██████▉ | 139/200 [05:59<02:14, 2.20s/it]\n 70%|███████ | 140/200 [06:03<02:44, 2.75s/it]\n 70%|███████ | 141/200 [06:07<03:04, 3.13s/it]\n 71%|███████ | 142/200 [06:07<02:12, 2.28s/it]\n 72%|███████▏ | 143/200 [06:08<01:38, 1.72s/it]\n 72%|███████▏ | 144/200 [06:12<02:15, 2.42s/it]\n 72%|███████▎ | 145/200 [06:16<02:37, 2.86s/it]\n 73%|███████▎ | 146/200 [06:20<02:53, 3.20s/it]\n 74%|███████▎ | 147/200 [06:24<03:02, 3.45s/it]\n 74%|███████▍ | 148/200 [06:28<03:07, 3.61s/it]\n 74%|███████▍ | 149/200 [06:32<03:09, 3.71s/it]\n 75%|███████▌ | 150/200 [06:36<03:09, 3.79s/it]\n 76%|███████▌ | 151/200 [06:36<02:15, 2.77s/it]\n 76%|███████▌ | 152/200 [06:36<01:37, 2.04s/it]\n 76%|███████▋ | 153/200 [06:40<02:03, 2.62s/it]\n 77%|███████▋ | 154/200 [06:41<01:29, 1.95s/it]\n 78%|███████▊ | 155/200 [06:41<01:05, 1.46s/it]\n 78%|███████▊ | 156/200 [06:41<00:50, 1.15s/it]\n 78%|███████▊ | 157/200 [06:42<00:39, 1.08it/s]\n 79%|███████▉ | 158/200 [06:42<00:32, 1.29it/s]\n 80%|███████▉ | 159/200 [06:46<01:10, 1.72s/it]\n 80%|████████ | 160/200 [06:50<01:35, 2.40s/it]\n 80%|████████ | 161/200 [06:54<01:52, 2.88s/it]\n 81%|████████ | 162/200 [06:55<01:20, 2.11s/it]\n 82%|████████▏ | 163/200 [06:55<00:59, 1.60s/it]\n 82%|████████▏ | 164/200 [06:59<01:24, 2.35s/it]\n 82%|████████▎ | 165/200 [06:59<01:01, 1.76s/it]\n 83%|████████▎ | 166/200 [07:00<00:44, 1.32s/it]\n 84%|████████▎ | 167/200 [07:00<00:34, 1.05s/it]\n 84%|████████▍ | 168/200 [07:04<01:02, 1.94s/it]\n 84%|████████▍ | 169/200 [07:08<01:19, 2.56s/it]\n 85%|████████▌ | 170/200 [07:12<01:28, 2.96s/it]\n 86%|████████▌ | 171/200 [07:16<01:34, 3.27s/it]\n 86%|████████▌ | 172/200 [07:20<01:37, 3.48s/it]\n 86%|████████▋ | 173/200 [07:20<01:08, 2.55s/it]\n 87%|████████▋ | 174/200 [07:24<01:17, 2.96s/it]\n 88%|████████▊ | 175/200 [07:28<01:22, 3.30s/it]\n 88%|████████▊ | 176/200 [07:32<01:23, 3.49s/it]\n 88%|████████▊ | 177/200 [07:36<01:23, 3.64s/it]\n 89%|████████▉ | 178/200 [07:37<00:58, 2.66s/it]\n 90%|████████▉ | 179/200 [07:37<00:41, 1.96s/it]\n 90%|█████████ | 180/200 [07:41<00:52, 2.61s/it]\n 90%|█████████ | 181/200 [07:41<00:36, 1.92s/it]\n 91%|█████████ | 182/200 [07:42<00:26, 1.47s/it]\n 92%|█████████▏| 183/200 [07:46<00:37, 2.23s/it]\n 92%|█████████▏| 184/200 [07:50<00:43, 2.72s/it]\n 92%|█████████▎| 185/200 [07:54<00:46, 3.10s/it]\n 93%|█████████▎| 186/200 [07:58<00:47, 3.37s/it]\n 94%|█████████▎| 187/200 [08:02<00:46, 3.56s/it]\n 94%|█████████▍| 188/200 [08:06<00:44, 3.69s/it]\n 94%|█████████▍| 189/200 [08:10<00:41, 3.79s/it]\n 95%|█████████▌| 190/200 [08:14<00:38, 3.90s/it]\n 96%|█████████▌| 191/200 [08:14<00:25, 2.84s/it]\n 96%|█████████▌| 192/200 [08:18<00:25, 3.20s/it]\n 96%|█████████▋| 193/200 [08:22<00:24, 3.44s/it]\n 97%|█████████▋| 194/200 [08:26<00:21, 3.60s/it]\n 98%|█████████▊| 195/200 [08:30<00:18, 3.68s/it]\n 98%|█████████▊| 196/200 [08:31<00:10, 2.69s/it]\n 98%|█████████▊| 197/200 [08:35<00:09, 3.08s/it]\n 99%|█████████▉| 198/200 [08:39<00:06, 3.35s/it]\n100%|█████████▉| 199/200 [08:39<00:02, 2.43s/it]\n100%|██████████| 200/200 [08:43<00:00, 2.89s/it]\n100%|██████████| 200/200 [08:43<00:00, 2.62s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1757459835/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1757459835/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1757459835/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1757459835/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 523.2832934856415\nerrors 76\nmean length: 1.86\n\nthroughput (request / second): 0.38220215032622257\nthroughput (character / second): 0.7108959996067741\naverage request duration (s) 2.6162952375411987\n50%ile request duration (s) 3.9524476528167725\n75%ile request duration (s) 4.011366605758667\n90%ile request duration (s) 4.06044819355011\n95%ile request duration (s) 4.094954180717468\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama31-mer-v2-44570-v23-profiler is running
Tearing down inference service chaiml-llama31-mer-v2-44570-v23-profiler
Service chaiml-llama31-mer-v2-44570-v23-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 0.89s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama31-mer-v2-44570-v23-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 1.08s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama31-mer-v2-44570-v23-profiler
Waiting for inference service chaiml-llama31-mer-v2-44570-v23-profiler to be ready
Inference service chaiml-llama31-mer-v2-44570-v23-profiler ready after 100.67866563796997s
Pipeline stage MKMLProfilerDeployer completed in 101.69s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplo2bbhc:/code/chaiverse_profiler_1757460532 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplo2bbhc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757460532 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757460532/summary.json'
%s, retrying in %s seconds...
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplo2bbhc:/code/chaiverse_profiler_1757461055 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplo2bbhc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757461055 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757461055/summary.json'
%s, retrying in %s seconds...
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplo2bbhc:/code/chaiverse_profiler_1757461550 --namespace tenant-chaiml-guanaco
kubectl --kubeconfig /code/guanaco/guanaco_services/resources/cks_kube_config exec -it chaiml-llama31-mer-v895a3a6001d04e46c8d2dbfa1d8d214a-deplo2bbhc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1757461550 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 1024 --output_tokens 1 --summary /code/chaiverse_profiler_1757461550/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Unable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:03<13:13, 3.99s/it]\n 1%| | 2/200 [00:08<13:22, 4.05s/it]\n 2%|▏ | 3/200 [00:08<07:48, 2.38s/it]\n 2%|▏ | 4/200 [00:12<10:01, 3.07s/it]\n 2%|▎ | 5/200 [00:16<11:11, 3.44s/it]\n 3%|▎ | 6/200 [00:16<07:39, 2.37s/it]\n 4%|▎ | 7/200 [00:21<09:27, 2.94s/it]\n 4%|▍ | 8/200 [00:21<06:46, 2.12s/it]\n 4%|▍ | 9/200 [00:21<05:03, 1.59s/it]\n 5%|▌ | 10/200 [00:26<07:31, 2.38s/it]\n 6%|▌ | 11/200 [00:30<09:02, 2.87s/it]\n 6%|▌ | 12/200 [00:30<06:37, 2.12s/it]\n 6%|▋ | 13/200 [00:34<08:30, 2.73s/it]\n 7%|▋ | 14/200 [00:38<09:44, 3.14s/it]\n 8%|▊ | 15/200 [00:42<10:28, 3.40s/it]\n 8%|▊ | 16/200 [00:43<07:39, 2.50s/it]\n 8%|▊ | 17/200 [00:47<09:07, 2.99s/it]\n 9%|▉ | 18/200 [00:51<10:05, 3.33s/it]\n 10%|▉ | 19/200 [00:55<10:39, 3.53s/it]\n 10%|█ | 20/200 [00:59<11:04, 3.69s/it]\n 10%|█ | 21/200 [01:03<11:22, 3.81s/it]\n 11%|█ | 22/200 [01:03<08:14, 2.78s/it]\n 12%|█▏ | 23/200 [01:04<06:01, 2.04s/it]\n 12%|█▏ | 24/200 [01:08<07:48, 2.66s/it]\n 12%|█▎ | 25/200 [01:12<09:00, 3.09s/it]\n 13%|█▎ | 26/200 [01:16<09:50, 3.40s/it]\n 14%|█▎ | 27/200 [01:16<07:06, 2.47s/it]\n 14%|█▍ | 28/200 [01:21<08:38, 3.02s/it]\n 14%|█▍ | 29/200 [01:21<06:16, 2.20s/it]\n 15%|█▌ | 30/200 [01:25<07:50, 2.77s/it]\n 16%|█▌ | 31/200 [01:29<08:55, 3.17s/it]\n 16%|█▌ | 32/200 [01:29<06:27, 2.31s/it]\n 16%|█▋ | 33/200 [01:33<07:56, 2.85s/it]\n 17%|█▋ | 34/200 [01:34<05:50, 2.11s/it]\n 18%|█▊ | 35/200 [01:34<04:20, 1.58s/it]\n 18%|█▊ | 36/200 [01:35<03:20, 1.23s/it]\n 18%|█▊ | 37/200 [01:35<02:35, 1.05it/s]\n 19%|█▉ | 38/200 [01:35<02:08, 1.26it/s]\n 20%|█▉ | 39/200 [01:39<04:50, 1.81s/it]\n 20%|██ | 40/200 [01:44<06:40, 2.50s/it]\n 20%|██ | 41/200 [01:44<04:53, 1.84s/it]\n 21%|██ | 42/200 [01:48<06:39, 2.53s/it]\n 22%|██▏ | 43/200 [01:52<07:50, 3.00s/it]\n 22%|██▏ | 44/200 [01:52<05:41, 2.19s/it]\n 22%|██▎ | 45/200 [01:53<04:17, 1.66s/it]\n 23%|██▎ | 46/200 [01:53<03:13, 1.26s/it]\n 24%|██▎ | 47/200 [01:54<02:33, 1.01s/it]\n 24%|██▍ | 48/200 [01:54<02:06, 1.20it/s]\n 24%|██▍ | 49/200 [01:58<04:30, 1.79s/it]\n 25%|██▌ | 50/200 [02:02<06:12, 2.48s/it]\n 26%|██▌ | 51/200 [02:03<04:37, 1.86s/it]\n 26%|██▌ | 52/200 [02:03<03:26, 1.40s/it]\n 26%|██▋ | 53/200 [02:03<02:42, 1.10s/it]\n 27%|██▋ | 54/200 [02:07<04:55, 2.02s/it]\n 28%|██▊ | 55/200 [02:11<06:19, 2.62s/it]\n 28%|██▊ | 56/200 [02:12<04:41, 1.96s/it]\n 28%|██▊ | 57/200 [02:12<03:35, 1.50s/it]\n 29%|██▉ | 58/200 [02:16<05:20, 2.26s/it]\n 30%|██▉ | 59/200 [02:17<03:58, 1.69s/it]\n 30%|███ | 60/200 [02:17<02:59, 1.28s/it]\n 30%|███ | 61/200 [02:21<04:59, 2.16s/it]\n 31%|███ | 62/200 [02:25<06:14, 2.71s/it]\n 32%|███▏ | 63/200 [02:26<04:35, 2.01s/it]\n 32%|███▏ | 64/200 [02:30<06:00, 2.65s/it]\n 32%|███▎ | 65/200 [02:34<06:56, 3.09s/it]\n 33%|███▎ | 66/200 [02:38<07:30, 3.36s/it]\n 34%|███▎ | 67/200 [02:42<07:55, 3.58s/it]\n 34%|███▍ | 68/200 [02:42<05:46, 2.63s/it]\n 34%|███▍ | 69/200 [02:43<04:13, 1.94s/it]\n 35%|███▌ | 70/200 [02:47<05:37, 2.59s/it]\n 36%|███▌ | 71/200 [02:51<06:32, 3.04s/it]\n 36%|███▌ | 72/200 [02:51<04:47, 2.25s/it]\n 36%|███▋ | 73/200 [02:55<05:52, 2.78s/it]\n 37%|███▋ | 74/200 [02:59<06:40, 3.18s/it]\n 38%|███▊ | 75/200 [03:04<07:11, 3.45s/it]\n 38%|███▊ | 76/200 [03:04<05:14, 2.54s/it]\n 38%|███▊ | 77/200 [03:08<06:14, 3.04s/it]\n 39%|███▉ | 78/200 [03:08<04:30, 2.22s/it]\n 40%|███▉ | 79/200 [03:13<05:38, 2.80s/it]\n 40%|████ | 80/200 [03:17<06:22, 3.19s/it]\n 40%|████ | 81/200 [03:17<04:36, 2.32s/it]\n 41%|████ | 82/200 [03:21<05:38, 2.87s/it]\n 42%|████▏ | 83/200 [03:25<06:18, 3.24s/it]\n 42%|████▏ | 84/200 [03:29<06:41, 3.47s/it]\n 42%|████▎ | 85/200 [03:33<07:04, 3.69s/it]\n 43%|████▎ | 86/200 [03:34<05:04, 2.67s/it]\n 44%|████▎ | 87/200 [03:38<05:51, 3.11s/it]\n 44%|████▍ | 88/200 [03:42<06:21, 3.41s/it]\n 44%|████▍ | 89/200 [03:42<04:34, 2.48s/it]\n 45%|████▌ | 90/200 [03:46<05:26, 2.97s/it]\n 46%|████▌ | 91/200 [03:51<06:00, 3.31s/it]\n 46%|████▌ | 92/200 [03:51<04:19, 2.40s/it]\n 46%|████▋ | 93/200 [03:51<03:13, 1.81s/it]\n 47%|████▋ | 94/200 [03:55<04:25, 2.51s/it]\n 48%|████▊ | 95/200 [03:56<03:13, 1.85s/it]\n 48%|████▊ | 96/200 [04:00<04:23, 2.53s/it]\n 48%|████▊ | 97/200 [04:04<05:09, 3.01s/it]\n 49%|████▉ | 98/200 [04:08<05:37, 3.30s/it]\n 50%|████▉ | 99/200 [04:12<05:58, 3.55s/it]\n 50%|█████ | 100/200 [04:12<04:20, 2.61s/it]\n 50%|█████ | 101/200 [04:13<03:10, 1.92s/it]\n 51%|█████ | 102/200 [04:17<04:12, 2.58s/it]\n 52%|█████▏ | 103/200 [04:21<04:55, 3.04s/it]\n 52%|█████▏ | 104/200 [04:21<03:33, 2.22s/it]\n 52%|█████▎ | 105/200 [04:22<02:40, 1.69s/it]\n 53%|█████▎ | 106/200 [04:22<02:00, 1.28s/it]\n 54%|█████▎ | 107/200 [04:26<03:18, 2.13s/it]\n 54%|█████▍ | 108/200 [04:30<04:11, 2.73s/it]\n 55%|█████▍ | 109/200 [04:34<04:46, 3.15s/it]\n 55%|█████▌ | 110/200 [04:35<03:26, 2.30s/it]\n 56%|█████▌ | 111/200 [04:39<04:13, 2.85s/it]\n 56%|█████▌ | 112/200 [04:43<04:44, 3.23s/it]\n 56%|█████▋ | 113/200 [04:47<05:01, 3.47s/it]\n 57%|█████▋ | 114/200 [04:47<03:38, 2.54s/it]\n 57%|█████▊ | 115/200 [04:52<04:16, 3.01s/it]\n 58%|█████▊ | 116/200 [04:52<03:04, 2.20s/it]\n 58%|█████▊ | 117/200 [04:56<03:50, 2.78s/it]\n 59%|█████▉ | 118/200 [05:00<04:22, 3.20s/it]\n 60%|█████▉ | 119/200 [05:04<04:38, 3.44s/it]\n 60%|██████ | 120/200 [05:08<04:51, 3.64s/it]\n 60%|██████ | 121/200 [05:09<03:30, 2.66s/it]\n 61%|██████ | 122/200 [05:13<04:01, 3.10s/it]\n 62%|██████▏ | 123/200 [05:13<02:53, 2.26s/it]\n 62%|██████▏ | 124/200 [05:17<03:33, 2.81s/it]\n 62%|██████▎ | 125/200 [05:21<03:59, 3.20s/it]\n 63%|██████▎ | 126/200 [05:22<02:55, 2.37s/it]\n 64%|██████▎ | 127/200 [05:22<02:07, 1.75s/it]\n 64%|██████▍ | 128/200 [05:22<01:37, 1.36s/it]\n 64%|██████▍ | 129/200 [05:27<02:37, 2.22s/it]\n 65%|██████▌ | 130/200 [05:31<03:13, 2.77s/it]\n 66%|██████▌ | 131/200 [05:35<03:39, 3.18s/it]\n 66%|██████▌ | 132/200 [05:35<02:39, 2.35s/it]\n 66%|██████▋ | 133/200 [05:39<03:14, 2.90s/it]\n 67%|██████▋ | 134/200 [05:40<02:20, 2.13s/it]\n 68%|██████▊ | 135/200 [05:44<02:58, 2.74s/it]\n 68%|██████▊ | 136/200 [05:48<03:23, 3.19s/it]\n 68%|██████▊ | 137/200 [05:52<03:37, 3.46s/it]\n 69%|██████▉ | 138/200 [05:56<03:46, 3.66s/it]\n 70%|██████▉ | 139/200 [06:01<03:51, 3.79s/it]\n 70%|███████ | 140/200 [06:05<03:53, 3.90s/it]\n 70%|███████ | 141/200 [06:05<02:46, 2.81s/it]\n 71%|███████ | 142/200 [06:09<03:08, 3.24s/it]\n 72%|███████▏ | 143/200 [06:09<02:14, 2.36s/it]\n 72%|███████▏ | 144/200 [06:10<01:39, 1.78s/it]\n 72%|███████▎ | 145/200 [06:14<02:17, 2.50s/it]\n 73%|███████▎ | 146/200 [06:18<02:39, 2.96s/it]\n 74%|███████▎ | 147/200 [06:18<01:55, 2.18s/it]\n 74%|███████▍ | 148/200 [06:23<02:24, 2.77s/it]\n 74%|███████▍ | 149/200 [06:27<02:42, 3.18s/it]\n 75%|███████▌ | 150/200 [06:31<02:51, 3.43s/it]\n 76%|███████▌ | 151/200 [06:35<02:57, 3.63s/it]\n 76%|███████▌ | 152/200 [06:35<02:07, 2.66s/it]\n 76%|███████▋ | 153/200 [06:39<02:26, 3.11s/it]\n 77%|███████▋ | 154/200 [06:43<02:35, 3.38s/it]\n 78%|███████▊ | 155/200 [06:47<02:41, 3.59s/it]\n 78%|███████▊ | 156/200 [06:48<01:55, 2.63s/it]\n 78%|███████▊ | 157/200 [06:48<01:23, 1.93s/it]\n 79%|███████▉ | 158/200 [06:49<01:01, 1.47s/it]\n 80%|███████▉ | 159/200 [06:49<00:47, 1.16s/it]\n 80%|████████ | 160/200 [06:53<01:20, 2.02s/it]\n 80%|████████ | 161/200 [06:57<01:43, 2.64s/it]\n 81%|████████ | 162/200 [07:01<01:57, 3.08s/it]\n 82%|████████▏ | 163/200 [07:05<02:05, 3.39s/it]\n 82%|████████▏ | 164/200 [07:06<01:28, 2.46s/it]\n 82%|████████▎ | 165/200 [07:10<01:43, 2.96s/it]\n 83%|████████▎ | 166/200 [07:10<01:14, 2.19s/it]\n 84%|████████▎ | 167/200 [07:14<01:31, 2.77s/it]\n 84%|████████▍ | 168/200 [07:15<01:05, 2.06s/it]\n 84%|████████▍ | 169/200 [07:19<01:22, 2.65s/it]\n 85%|████████▌ | 170/200 [07:23<01:32, 3.07s/it]\n 86%|████████▌ | 171/200 [07:23<01:05, 2.27s/it]\n 86%|████████▌ | 172/200 [07:24<00:47, 1.71s/it]\n 86%|████████▋ | 173/200 [07:28<01:05, 2.44s/it]\n 87%|████████▋ | 174/200 [07:28<00:46, 1.80s/it]\n 88%|████████▊ | 175/200 [07:28<00:34, 1.38s/it]\n 88%|████████▊ | 176/200 [07:29<00:25, 1.06s/it]\n 88%|████████▊ | 177/200 [07:33<00:45, 1.99s/it]\n 89%|████████▉ | 178/200 [07:37<00:57, 2.62s/it]\n 90%|████████▉ | 179/200 [07:41<01:04, 3.09s/it]\n 90%|█████████ | 180/200 [07:45<01:07, 3.37s/it]\n 90%|█████████ | 181/200 [07:49<01:07, 3.57s/it]\n 91%|█████████ | 182/200 [07:50<00:47, 2.61s/it]\n 92%|█████████▏| 183/200 [07:54<00:52, 3.06s/it]\n 92%|█████████▏| 184/200 [07:54<00:35, 2.23s/it]\n 92%|█████████▎| 185/200 [07:58<00:41, 2.80s/it]\n 93%|█████████▎| 186/200 [07:58<00:28, 2.05s/it]\n 94%|█████████▎| 187/200 [07:59<00:20, 1.56s/it]\n 94%|█████████▍| 188/200 [08:03<00:27, 2.33s/it]\n 94%|█████████▍| 189/200 [08:03<00:19, 1.75s/it]\n 95%|█████████▌| 190/200 [08:04<00:13, 1.32s/it]\n 96%|█████████▌| 191/200 [08:08<00:19, 2.15s/it]\n 96%|█████████▌| 192/200 [08:08<00:12, 1.62s/it]\n 96%|█████████▋| 193/200 [08:12<00:16, 2.39s/it]\n 97%|█████████▋| 194/200 [08:13<00:10, 1.77s/it]\n 98%|█████████▊| 195/200 [08:17<00:12, 2.47s/it]\n 98%|█████████▊| 196/200 [08:17<00:07, 1.82s/it]\n 98%|█████████▊| 197/200 [08:21<00:07, 2.50s/it]\n 99%|█████████▉| 198/200 [08:22<00:03, 1.87s/it]\n100%|█████████▉| 199/200 [08:22<00:01, 1.40s/it]\n100%|██████████| 200/200 [08:22<00:00, 1.10s/it]\n100%|██████████| 200/200 [08:22<00:00, 2.51s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1757461550/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1757461550/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1757461550/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1757461550/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 502.8025050163269\nerrors 85\nmean length: 1.725\n\nthroughput (request / second): 0.39777049239940765\nthroughput (character / second): 0.6861540993889782\naverage request duration (s) 2.5138992512226106\n50%ile request duration (s) 4.017350792884827\n75%ile request duration (s) 4.114926040172577\n90%ile request duration (s) 4.140533351898194\n95%ile request duration (s) 4.178019940853119\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama31-mer-v2-44570-v23-profiler is running
Tearing down inference service chaiml-llama31-mer-v2-44570-v23-profiler
Service chaiml-llama31-mer-v2-44570-v23-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 0.98s
Shutdown handler de-registered
chaiml-llama31-mer-v2-_44570_v23 status is now inactive due to auto deactivation removed underperforming models
chaiml-llama31-mer-v2-_44570_v23 status is now torndown due to DeploymentManager action