developer_uid: NischayDnk
submission_id: chaiml-llama3-200m-v2-t_76584_v2
model_name: chaiml-llama3-200m-v2-t_76584_v2
model_group: ChaiML/llama3-200m-v2-tr
status: torndown
timestamp: 2025-07-09T19:13:21+00:00
num_battles: 8066
num_wins: 4267
celo_rating: 1311.37
family_friendly_score: 0.5304
family_friendly_standard_error: 0.007057986115033097
submission_type: basic
model_repo: ChaiML/llama3-200m-v2-try1-new8m-filterv3-4m-full-512seq-bestep-5725
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 512
max_output_tokens: 1
reward_model: default
display_name: chaiml-llama3-200m-v2-t_76584_v2
ineligible_reason: max_output_tokens!=64
is_internal_developer: False
language_model: ChaiML/llama3-200m-v2-try1-new8m-filterv3-4m-full-512seq-bestep-5725
model_size: 8B
ranking_group: single
us_pacific_date: 2025-07-09
win_ratio: 0.5290106620381849
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-llama3-200m-v2-t-76584-v2-mkmlizer
Waiting for job on chaiml-llama3-200m-v2-t-76584-v2-mkmlizer to finish
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ Version: 0.29.15 ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ https://mk1.ai ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ belonging to: ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ Chai Research Corp. ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ║ ║
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: Downloaded to shared memory in 24.171s
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: Checking if ChaiML/llama3-200m-v2-try1-new8m-filterv3-4m-full-512seq-bestep-5725 already exists in ChaiML
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpedimbgv3, device:0
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: quantized model in 19.525s
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: Processed model ChaiML/llama3-200m-v2-try1-new8m-filterv3-4m-full-512seq-bestep-5725 in 43.696s
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: creating bucket guanaco-mkml-models
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-llama3-200m-v2-t-76584-v2/nvidia
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-llama3-200m-v2-t-76584-v2/nvidia/config.json
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-llama3-200m-v2-t-76584-v2/nvidia/tokenizer.json
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-llama3-200m-v2-t-76584-v2/nvidia/flywheel_model.0.safetensors
chaiml-llama3-200m-v2-t-76584-v2-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 2%|▏ | 5/291 [00:00<00:07, 37.09it/s] Loading 0: 4%|▍ | 13/291 [00:00<00:04, 58.71it/s] Loading 0: 7%|▋ | 20/291 [00:00<00:04, 54.44it/s] Loading 0: 9%|▉ | 26/291 [00:00<00:04, 53.81it/s] Loading 0: 11%|█ | 32/291 [00:00<00:05, 43.66it/s] Loading 0: 14%|█▎ | 40/291 [00:00<00:04, 52.42it/s] Loading 0: 16%|█▌ | 46/291 [00:00<00:04, 49.10it/s] Loading 0: 18%|█▊ | 52/291 [00:01<00:04, 50.79it/s] Loading 0: 20%|██ | 59/291 [00:01<00:04, 47.12it/s] Loading 0: 23%|██▎ | 67/291 [00:01<00:04, 53.61it/s] Loading 0: 25%|██▌ | 73/291 [00:01<00:04, 47.06it/s] Loading 0: 27%|██▋ | 78/291 [00:01<00:04, 44.52it/s] Loading 0: 29%|██▊ | 83/291 [00:01<00:06, 32.45it/s] Loading 0: 30%|██▉ | 87/291 [00:02<00:06, 32.51it/s] Loading 0: 32%|███▏ | 94/291 [00:02<00:04, 40.06it/s] Loading 0: 34%|███▍ | 100/291 [00:02<00:04, 40.93it/s] Loading 0: 36%|███▌ | 105/291 [00:02<00:04, 41.29it/s] Loading 0: 38%|███▊ | 112/291 [00:02<00:03, 47.73it/s] Loading 0: 41%|████ | 118/291 [00:02<00:03, 46.37it/s] Loading 0: 42%|████▏ | 123/291 [00:02<00:03, 44.86it/s] Loading 0: 45%|████▍ | 130/291 [00:02<00:03, 49.77it/s] Loading 0: 47%|████▋ | 136/291 [00:02<00:03, 46.10it/s] Loading 0: 48%|████▊ | 141/291 [00:03<00:03, 45.42it/s] Loading 0: 51%|█████ | 148/291 [00:03<00:02, 50.55it/s] Loading 0: 53%|█████▎ | 154/291 [00:03<00:02, 45.67it/s] Loading 0: 55%|█████▍ | 159/291 [00:03<00:02, 45.02it/s] Loading 0: 57%|█████▋ | 166/291 [00:03<00:02, 50.64it/s] Loading 0: 59%|█████▉ | 172/291 [00:03<00:02, 47.97it/s] Loading 0: 62%|██████▏ | 179/291 [00:03<00:02, 52.70it/s] Loading 0: 64%|██████▎ | 185/291 [00:03<00:01, 54.09it/s] Loading 0: 66%|██████▌ | 191/291 [00:04<00:03, 32.05it/s] Loading 0: 67%|██████▋ | 196/291 [00:04<00:02, 34.02it/s] Loading 0: 69%|██████▉ | 202/291 [00:04<00:02, 38.35it/s] Loading 0: 71%|███████▏ | 208/291 [00:04<00:02, 37.19it/s] Loading 0: 73%|███████▎ | 213/291 [00:04<00:02, 38.24it/s] Loading 0: 76%|███████▌ | 220/291 [00:04<00:01, 44.07it/s] Loading 0: 77%|███████▋ | 225/291 [00:05<00:01, 43.86it/s] Loading 0: 79%|███████▉ | 230/291 [00:05<00:01, 36.95it/s] Loading 0: 82%|████████▏ | 238/291 [00:05<00:01, 45.92it/s] Loading 0: 84%|████████▍ | 244/291 [00:05<00:01, 44.17it/s] Loading 0: 86%|████████▌ | 249/291 [00:05<00:00, 42.51it/s] Loading 0: 88%|████████▊ | 256/291 [00:05<00:00, 47.90it/s] Loading 0: 90%|█████████ | 262/291 [00:05<00:00, 45.13it/s] Loading 0: 92%|█████████▏| 267/291 [00:06<00:00, 44.35it/s] Loading 0: 94%|█████████▍| 274/291 [00:06<00:00, 49.87it/s] Loading 0: 96%|█████████▌| 280/291 [00:06<00:00, 44.86it/s] Loading 0: 98%|█████████▊| 285/291 [00:06<00:00, 45.08it/s] Loading 0: 100%|█████████▉| 290/291 [00:06<00:00, 32.97it/s]
Job chaiml-llama3-200m-v2-t-76584-v2-mkmlizer completed after 64.25s with status: succeeded
Stopping job with name chaiml-llama3-200m-v2-t-76584-v2-mkmlizer
Pipeline stage MKMLizer completed in 65.09s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.30s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-llama3-200m-v2-t-76584-v2
Waiting for inference service chaiml-llama3-200m-v2-t-76584-v2 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service chaiml-llama3-200m-v2-t-76584-v2 ready after 201.64216423034668s
Pipeline stage MKMLDeployer completed in 203.05s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.476990699768066s
Received healthy response to inference request in 7.73564076423645s
Received healthy response to inference request in 3.8071188926696777s
Received healthy response to inference request in 4.968757152557373s
Received healthy response to inference request in 3.9178884029388428s
5 requests
0 failed requests
5th percentile: 3.8292727947235106
10th percentile: 3.851426696777344
20th percentile: 3.89573450088501
30th percentile: 4.128062152862549
40th percentile: 4.548409652709961
50th percentile: 4.968757152557373
60th percentile: 5.17205057144165
70th percentile: 5.375343990325928
80th percentile: 5.928720712661743
90th percentile: 6.832180738449097
95th percentile: 7.283910751342773
99th percentile: 7.6452947616577145
mean time: 5.181279182434082
%s, retrying in %s seconds...
Received healthy response to inference request in 4.836776494979858s
Received healthy response to inference request in 4.541748762130737s
Received healthy response to inference request in 3.4383764266967773s
Received healthy response to inference request in 4.31475567817688s
Received healthy response to inference request in 2.8798234462738037s
5 requests
0 failed requests
5th percentile: 2.9915340423583983
10th percentile: 3.1032446384429933
20th percentile: 3.326665830612183
30th percentile: 3.6136522769927977
40th percentile: 3.964203977584839
50th percentile: 4.31475567817688
60th percentile: 4.405552911758423
70th percentile: 4.4963501453399655
80th percentile: 4.600754308700561
90th percentile: 4.71876540184021
95th percentile: 4.777770948410034
99th percentile: 4.824975385665893
mean time: 4.0022961616516115
Pipeline stage StressChecker completed in 51.58s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 1.08s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 1.08s
Shutdown handler de-registered
chaiml-llama3-200m-v2-t_76584_v2 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama3-200m-v2-t-76584-v2-profiler
Waiting for inference service chaiml-llama3-200m-v2-t-76584-v2-profiler to be ready
Inference service chaiml-llama3-200m-v2-t-76584-v2-profiler ready after 203.0488727092743s
Pipeline stage MKMLProfilerDeployer completed in 204.09s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama3-200m-vf33427930223a17abe57a59f63126682-deplomd8bb:/code/chaiverse_profiler_1752089019 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama3-200m-vf33427930223a17abe57a59f63126682-deplomd8bb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1752089019 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1752089019/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama3-200m-vf33427930223a17abe57a59f63126682-deplomd8bb:/code/chaiverse_profiler_1752089442 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama3-200m-vf33427930223a17abe57a59f63126682-deplomd8bb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1752089442 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1752089442/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama3-200m-vf33427930223a17abe57a59f63126682-deplomd8bb:/code/chaiverse_profiler_1752089887 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama3-200m-vf33427930223a17abe57a59f63126682-deplomd8bb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1752089887 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1752089887/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Defaulted container "kserve-container" out of: kserve-container, queue-proxy\nUnable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<00:50, 3.94it/s]\n 1%| | 2/200 [00:03<06:55, 2.10s/it]\n 2%|▏ | 3/200 [00:07<09:01, 2.75s/it]\n 2%|▏ | 4/200 [00:07<05:44, 1.76s/it]\n 2%|▎ | 5/200 [00:07<03:56, 1.22s/it]\n 3%|▎ | 6/200 [00:07<02:51, 1.13it/s]\n 4%|▎ | 7/200 [00:11<05:27, 1.70s/it]\n 4%|▍ | 8/200 [00:14<07:10, 2.24s/it]\n 4%|▍ | 9/200 [00:14<05:09, 1.62s/it]\n 5%|▌ | 10/200 [00:15<03:47, 1.20s/it]\n 6%|▌ | 11/200 [00:18<05:55, 1.88s/it]\n 6%|▌ | 12/200 [00:21<07:18, 2.33s/it]\n 6%|▋ | 13/200 [00:22<05:17, 1.70s/it]\n 7%|▋ | 14/200 [00:25<06:53, 2.22s/it]\n 8%|▊ | 15/200 [00:29<07:57, 2.58s/it]\n 8%|▊ | 16/200 [00:32<08:39, 2.82s/it]\n 8%|▊ | 17/200 [00:35<09:05, 2.98s/it]\n 9%|▉ | 18/200 [00:39<09:24, 3.10s/it]\n 10%|▉ | 19/200 [00:42<09:53, 3.28s/it]\n 10%|█ | 20/200 [00:46<09:56, 3.31s/it]\n 10%|█ | 21/200 [00:49<09:59, 3.35s/it]\n 11%|█ | 22/200 [00:53<09:59, 3.37s/it]\n 12%|█▏ | 23/200 [00:56<09:56, 3.37s/it]\n 12%|█▏ | 24/200 [00:56<07:01, 2.39s/it]\n 12%|█▎ | 25/200 [00:56<05:06, 1.75s/it]\n 13%|█▎ | 26/200 [00:57<03:47, 1.31s/it]\n 14%|█▎ | 27/200 [00:57<02:51, 1.01it/s]\n 14%|█▍ | 28/200 [01:00<04:57, 1.73s/it]\n 14%|█▍ | 29/200 [01:01<03:38, 1.28s/it]\n 15%|█▌ | 30/200 [01:04<05:26, 1.92s/it]\n 16%|█▌ | 31/200 [01:04<03:59, 1.42s/it]\n 16%|█▌ | 32/200 [01:08<05:38, 2.02s/it]\n 16%|█▋ | 33/200 [01:11<06:48, 2.45s/it]\n 17%|█▋ | 34/200 [01:11<04:56, 1.78s/it]\n 18%|█▊ | 35/200 [01:15<06:13, 2.26s/it]\n 18%|█▊ | 36/200 [01:18<07:06, 2.60s/it]\n 18%|█▊ | 37/200 [01:21<07:43, 2.84s/it]\n 19%|█▉ | 38/200 [01:25<08:06, 3.01s/it]\n 20%|█▉ | 39/200 [01:25<05:51, 2.18s/it]\n 20%|██ | 40/200 [01:25<04:16, 1.60s/it]\n 20%|██ | 41/200 [01:26<03:10, 1.20s/it]\n 21%|██ | 42/200 [01:29<04:57, 1.88s/it]\n 22%|██▏ | 43/200 [01:33<06:06, 2.33s/it]\n 22%|██▏ | 44/200 [01:33<04:25, 1.70s/it]\n 22%|██▎ | 45/200 [01:33<03:16, 1.27s/it]\n 23%|██▎ | 46/200 [01:33<02:28, 1.04it/s]\n 24%|██▎ | 47/200 [01:37<04:19, 1.70s/it]\n 24%|██▍ | 48/200 [01:37<03:11, 1.26s/it]\n 24%|██▍ | 49/200 [01:37<02:25, 1.04it/s]\n 25%|██▌ | 50/200 [01:37<01:46, 1.41it/s]\n 26%|██▌ | 51/200 [01:41<03:47, 1.52s/it]\n 26%|██▌ | 52/200 [01:41<02:48, 1.14s/it]\n 26%|██▋ | 53/200 [01:41<02:08, 1.14it/s]\n 27%|██▋ | 54/200 [01:41<01:41, 1.44it/s]\n 28%|██▊ | 55/200 [01:45<03:40, 1.52s/it]\n 28%|██▊ | 56/200 [01:45<02:45, 1.15s/it]\n 28%|██▊ | 57/200 [01:49<04:23, 1.84s/it]\n 29%|██▉ | 58/200 [01:49<03:14, 1.37s/it]\n 30%|██▉ | 59/200 [01:52<04:40, 1.99s/it]\n 30%|███ | 60/200 [01:53<03:25, 1.47s/it]\n 30%|███ | 61/200 [01:53<02:33, 1.11s/it]\n 31%|███ | 62/200 [01:53<01:57, 1.18it/s]\n 32%|███▏ | 63/200 [01:57<03:40, 1.61s/it]\n 32%|███▏ | 64/200 [02:00<04:53, 2.16s/it]\n 32%|███▎ | 65/200 [02:00<03:33, 1.58s/it]\n 33%|███▎ | 66/200 [02:00<02:39, 1.19s/it]\n 34%|███▎ | 67/200 [02:04<04:08, 1.87s/it]\n 34%|███▍ | 68/200 [02:04<02:57, 1.34s/it]\n 34%|███▍ | 69/200 [02:08<04:22, 2.00s/it]\n 35%|███▌ | 70/200 [02:08<03:07, 1.44s/it]\n 36%|███▌ | 71/200 [02:11<04:28, 2.08s/it]\n 36%|███▌ | 72/200 [02:15<05:18, 2.48s/it]\n 36%|███▋ | 73/200 [02:18<05:49, 2.75s/it]\n 37%|███▋ | 74/200 [02:22<06:12, 2.96s/it]\n 38%|███▊ | 75/200 [02:25<06:27, 3.10s/it]\n 38%|███▊ | 76/200 [02:25<04:33, 2.21s/it]\n 38%|███▊ | 77/200 [02:25<03:20, 1.63s/it]\n 39%|███▉ | 78/200 [02:26<02:29, 1.22s/it]\n 40%|███▉ | 79/200 [02:26<01:53, 1.07it/s]\n 40%|████ | 80/200 [02:29<03:21, 1.68s/it]\n 40%|████ | 81/200 [02:30<02:28, 1.25s/it]\n 41%|████ | 82/200 [02:33<03:45, 1.91s/it]\n 42%|████▏ | 83/200 [02:36<04:34, 2.35s/it]\n 42%|████▏ | 84/200 [02:40<05:08, 2.66s/it]\n 42%|████▎ | 85/200 [02:43<05:34, 2.91s/it]\n 43%|████▎ | 86/200 [02:47<05:52, 3.10s/it]\n 44%|████▎ | 87/200 [02:47<04:09, 2.20s/it]\n 44%|████▍ | 88/200 [02:50<04:49, 2.59s/it]\n 44%|████▍ | 89/200 [02:51<03:29, 1.89s/it]\n 45%|████▌ | 90/200 [02:54<04:19, 2.36s/it]\n 46%|████▌ | 91/200 [02:58<04:55, 2.71s/it]\n 46%|████▌ | 92/200 [03:01<05:17, 2.94s/it]\n 46%|████▋ | 93/200 [03:01<03:44, 2.09s/it]\n 47%|████▋ | 94/200 [03:02<02:43, 1.55s/it]\n 48%|████▊ | 95/200 [03:05<03:42, 2.12s/it]\n 48%|████▊ | 96/200 [03:08<04:19, 2.50s/it]\n 48%|████▊ | 97/200 [03:12<04:45, 2.77s/it]\n 49%|████▉ | 98/200 [03:15<05:05, 3.00s/it]\n 50%|████▉ | 99/200 [03:15<03:35, 2.13s/it]\n 50%|█████ | 100/200 [03:19<04:11, 2.51s/it]\n 50%|█████ | 101/200 [03:22<04:39, 2.82s/it]\n 51%|█████ | 102/200 [03:26<04:55, 3.01s/it]\n 52%|█████▏ | 103/200 [03:29<05:03, 3.13s/it]\n 52%|█████▏ | 104/200 [03:33<05:08, 3.22s/it]\n 52%|█████▎ | 105/200 [03:36<05:12, 3.29s/it]\n 53%|█████▎ | 106/200 [03:39<05:12, 3.32s/it]\n 54%|█████▎ | 107/200 [03:40<03:39, 2.36s/it]\n 54%|█████▍ | 108/200 [03:40<02:39, 1.73s/it]\n 55%|█████▍ | 109/200 [03:43<03:24, 2.24s/it]\n 55%|█████▌ | 110/200 [03:44<02:28, 1.65s/it]\n 56%|█████▌ | 111/200 [03:44<01:50, 1.24s/it]\n 56%|█████▌ | 112/200 [03:44<01:23, 1.06it/s]\n 56%|█████▋ | 113/200 [03:44<01:04, 1.35it/s]\n 57%|█████▋ | 114/200 [03:45<00:51, 1.67it/s]\n 57%|█████▊ | 115/200 [03:45<00:42, 1.98it/s]\n 58%|█████▊ | 116/200 [03:48<01:57, 1.39s/it]\n 58%|█████▊ | 117/200 [03:52<02:47, 2.01s/it]\n 59%|█████▉ | 118/200 [03:55<03:20, 2.45s/it]\n 60%|█████▉ | 119/200 [03:59<03:44, 2.78s/it]\n 60%|██████ | 120/200 [04:02<04:00, 3.01s/it]\n 60%|██████ | 121/200 [04:06<04:07, 3.13s/it]\n 61%|██████ | 122/200 [04:09<04:11, 3.23s/it]\n 62%|██████▏ | 123/200 [04:13<04:14, 3.31s/it]\n 62%|██████▏ | 124/200 [04:16<04:12, 3.32s/it]\n 62%|██████▎ | 125/200 [04:16<02:57, 2.37s/it]\n 63%|██████▎ | 126/200 [04:17<02:08, 1.73s/it]\n 64%|██████▎ | 127/200 [04:20<02:43, 2.24s/it]\n 64%|██████▍ | 128/200 [04:23<03:08, 2.62s/it]\n 64%|██████▍ | 129/200 [04:27<03:23, 2.86s/it]\n 65%|██████▌ | 130/200 [04:30<03:31, 3.03s/it]\n 66%|██████▌ | 131/200 [04:34<03:37, 3.15s/it]\n 66%|██████▌ | 132/200 [04:34<02:32, 2.24s/it]\n 66%|██████▋ | 133/200 [04:37<02:55, 2.62s/it]\n 67%|██████▋ | 134/200 [04:41<03:08, 2.86s/it]\n 68%|██████▊ | 135/200 [04:44<03:18, 3.05s/it]\n 68%|██████▊ | 136/200 [04:44<02:19, 2.17s/it]\n 68%|██████▊ | 137/200 [04:45<01:40, 1.60s/it]\n 69%|██████▉ | 138/200 [04:45<01:13, 1.19s/it]\n 70%|██████▉ | 139/200 [04:48<01:53, 1.87s/it]\n 70%|███████ | 140/200 [04:52<02:19, 2.32s/it]\n 70%|███████ | 141/200 [04:55<02:37, 2.68s/it]\n 71%|███████ | 142/200 [04:59<02:48, 2.90s/it]\n 72%|███████▏ | 143/200 [04:59<01:57, 2.07s/it]\n 72%|███████▏ | 144/200 [05:02<02:18, 2.47s/it]\n 72%|███████▎ | 145/200 [05:06<02:31, 2.75s/it]\n 73%|███████▎ | 146/200 [05:06<01:47, 1.99s/it]\n 74%|███████▎ | 147/200 [05:09<02:10, 2.46s/it]\n 74%|███████▍ | 148/200 [05:13<02:22, 2.73s/it]\n 74%|███████▍ | 149/200 [05:13<01:39, 1.95s/it]\n 75%|███████▌ | 150/200 [05:16<01:59, 2.39s/it]\n 76%|███████▌ | 151/200 [05:20<02:14, 2.74s/it]\n 76%|███████▌ | 152/200 [05:20<01:33, 1.96s/it]\n 76%|███████▋ | 153/200 [05:23<01:51, 2.38s/it]\n 77%|███████▋ | 154/200 [05:24<01:19, 1.73s/it]\n 78%|███████▊ | 155/200 [05:27<01:43, 2.30s/it]\n 78%|███████▊ | 156/200 [05:31<01:56, 2.65s/it]\n 78%|███████▊ | 157/200 [05:31<01:21, 1.89s/it]\n 79%|███████▉ | 158/200 [05:34<01:38, 2.33s/it]\n 80%|███████▉ | 159/200 [05:38<01:49, 2.68s/it]\n 80%|████████ | 160/200 [05:41<01:57, 2.93s/it]\n 80%|████████ | 161/200 [05:41<01:21, 2.09s/it]\n 81%|████████ | 162/200 [05:42<00:58, 1.55s/it]\n 82%|████████▏ | 163/200 [05:45<01:18, 2.12s/it]\n 82%|████████▏ | 164/200 [05:48<01:30, 2.53s/it]\n 82%|████████▎ | 165/200 [05:49<01:04, 1.84s/it]\n 83%|████████▎ | 166/200 [05:49<00:46, 1.36s/it]\n 84%|████████▎ | 167/200 [05:52<01:04, 1.97s/it]\n 84%|████████▍ | 168/200 [05:53<00:46, 1.45s/it]\n 84%|████████▍ | 169/200 [05:56<01:02, 2.02s/it]\n 85%|████████▌ | 170/200 [05:59<01:14, 2.47s/it]\n 86%|████████▌ | 171/200 [06:03<01:19, 2.75s/it]\n 86%|████████▌ | 172/200 [06:06<01:22, 2.93s/it]\n 86%|████████▋ | 173/200 [06:10<01:23, 3.11s/it]\n 87%|████████▋ | 174/200 [06:10<00:57, 2.21s/it]\n 88%|████████▊ | 175/200 [06:10<00:40, 1.63s/it]\n 88%|████████▊ | 176/200 [06:10<00:29, 1.22s/it]\n 88%|████████▊ | 177/200 [06:11<00:21, 1.07it/s]\n 89%|████████▉ | 178/200 [06:11<00:16, 1.36it/s]\n 90%|████████▉ | 179/200 [06:14<00:31, 1.52s/it]\n 90%|█████████ | 180/200 [06:18<00:41, 2.08s/it]\n 90%|█████████ | 181/200 [06:21<00:47, 2.49s/it]\n 91%|█████████ | 182/200 [06:24<00:49, 2.76s/it]\n 92%|█████████▏| 183/200 [06:28<00:50, 2.95s/it]\n 92%|█████████▏| 184/200 [06:28<00:34, 2.14s/it]\n 92%|█████████▎| 185/200 [06:32<00:38, 2.54s/it]\n 93%|█████████▎| 186/200 [06:35<00:39, 2.79s/it]\n 94%|█████████▎| 187/200 [06:35<00:25, 1.99s/it]\n 94%|█████████▍| 188/200 [06:39<00:29, 2.45s/it]\n 94%|█████████▍| 189/200 [06:39<00:19, 1.75s/it]\n 95%|█████████▌| 190/200 [06:39<00:13, 1.30s/it]\n 96%|█████████▌| 191/200 [06:42<00:17, 1.93s/it]\n 96%|█████████▌| 192/200 [06:46<00:19, 2.41s/it]\n 96%|█████████▋| 193/200 [06:49<00:19, 2.72s/it]\n 97%|█████████▋| 194/200 [06:53<00:17, 2.93s/it]\n 98%|█████████▊| 195/200 [06:56<00:15, 3.09s/it]\n 98%|█████████▊| 196/200 [07:00<00:12, 3.18s/it]\n 98%|█████████▊| 197/200 [07:00<00:06, 2.27s/it]\n 99%|█████████▉| 198/200 [07:03<00:05, 2.65s/it]\n100%|█████████▉| 199/200 [07:03<00:01, 1.89s/it]\n100%|██████████| 200/200 [07:04<00:00, 1.40s/it]\n100%|██████████| 200/200 [07:04<00:00, 2.12s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1752089887/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1752089887/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1752089887/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1752089887/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 424.2075686454773\nerrors 82\nmean length: 1.77\n\nthroughput (request / second): 0.4714673070040055\nthroughput (character / second): 0.8344971333970899\naverage request duration (s) 2.1209268093109133\n50%ile request duration (s) 3.3789669275283813\n75%ile request duration (s) 3.440158188343048\n90%ile request duration (s) 3.5084945917129517\n95%ile request duration (s) 3.5292382717132567\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama3-200m-v2-t-76584-v2-profiler is running
Tearing down inference service chaiml-llama3-200m-v2-t-76584-v2-profiler
Service chaiml-llama3-200m-v2-t-76584-v2-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 3.50s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 8133.57s
Shutdown handler de-registered
chaiml-llama3-200m-v2-t_76584_v2 status is now inactive due to auto deactivation removed underperforming models
chaiml-llama3-200m-v2-t_76584_v2 status is now torndown due to DeploymentManager action