developer_uid: NischayDnk
submission_id: chaiml-llama-8b-nis-ret_96788_v1
model_name: chaiml-llama-8b-nis-ret_96788_v1
model_group: ChaiML/llama_8b_nis_retu
status: torndown
timestamp: 2025-07-10T23:42:21+00:00
num_battles: 10957
num_wins: 5538
celo_rating: 1295.32
family_friendly_score: 0.5358
family_friendly_standard_error: 0.007052919395541112
submission_type: basic
model_repo: ChaiML/llama_8b_nis_retune_512seq_ftgrok_36klenfilter_60ksamp_jul10_lora1125_579
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 512
max_output_tokens: 1
reward_model: default
display_name: chaiml-llama-8b-nis-ret_96788_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: False
language_model: ChaiML/llama_8b_nis_retune_512seq_ftgrok_36klenfilter_60ksamp_jul10_lora1125_579
model_size: 8B
ranking_group: single
us_pacific_date: 2025-07-10
win_ratio: 0.5054303185178425
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-llama-8b-nis-ret-96788-v1-mkmlizer
Waiting for job on chaiml-llama-8b-nis-ret-96788-v1-mkmlizer to finish
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ Version: 0.29.15 ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ belonging to: ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: Downloaded to shared memory in 28.322s
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: Checking if ChaiML/llama_8b_nis_retune_512seq_ftgrok_36klenfilter_60ksamp_jul10_lora1125_579 already exists in ChaiML
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpvffv23k6, device:0
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: quantized model in 20.040s
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: Processed model ChaiML/llama_8b_nis_retune_512seq_ftgrok_36klenfilter_60ksamp_jul10_lora1125_579 in 48.362s
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-llama-8b-nis-ret-96788-v1/nvidia
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ret-96788-v1/nvidia/config.json
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ret-96788-v1/nvidia/special_tokens_map.json
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ret-96788-v1/nvidia/tokenizer_config.json
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ret-96788-v1/nvidia/tokenizer.json
chaiml-llama-8b-nis-ret-96788-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-llama-8b-nis-ret-96788-v1/nvidia/flywheel_model.0.safetensors
Job chaiml-llama-8b-nis-ret-96788-v1-mkmlizer completed after 74.83s with status: succeeded
Stopping job with name chaiml-llama-8b-nis-ret-96788-v1-mkmlizer
Pipeline stage MKMLizer completed in 75.57s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-llama-8b-nis-ret-96788-v1
Waiting for inference service chaiml-llama-8b-nis-ret-96788-v1 to be ready
Inference service chaiml-llama-8b-nis-ret-96788-v1 ready after 200.7336184978485s
Pipeline stage MKMLDeployer completed in 201.47s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 6.2213969230651855s
Received healthy response to inference request in 3.2455809116363525s
Received healthy response to inference request in 3.3202476501464844s
Received healthy response to inference request in 4.735822677612305s
Received healthy response to inference request in 3.7111806869506836s
5 requests
0 failed requests
5th percentile: 3.260514259338379
10th percentile: 3.2754476070404053
20th percentile: 3.305314302444458
30th percentile: 3.3984342575073243
40th percentile: 3.5548074722290037
50th percentile: 3.7111806869506836
60th percentile: 4.121037483215332
70th percentile: 4.5308942794799805
80th percentile: 5.032937526702881
90th percentile: 5.627167224884033
95th percentile: 5.924282073974609
99th percentile: 6.16197395324707
mean time: 4.246845769882202
Pipeline stage StressChecker completed in 22.44s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.62s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.68s
Shutdown handler de-registered
chaiml-llama-8b-nis-ret_96788_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.09s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama-8b-nis-ret-96788-v1-profiler
Waiting for inference service chaiml-llama-8b-nis-ret-96788-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama-8b-nis-ret-96788-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 3.19s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama-8b-nis-ret-96788-v1-profiler
Waiting for inference service chaiml-llama-8b-nis-ret-96788-v1-profiler to be ready
Inference service chaiml-llama-8b-nis-ret-96788-v1-profiler ready after 70.7378032207489s
Pipeline stage MKMLProfilerDeployer completed in 71.30s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-7e6c9fa00ccb0459ece8be8bb7c22332-deplobbc6d:/code/chaiverse_profiler_1752194412 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-7e6c9fa00ccb0459ece8be8bb7c22332-deplobbc6d --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1752194412 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1752194412/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-7e6c9fa00ccb0459ece8be8bb7c22332-deplobbc6d:/code/chaiverse_profiler_1752194818 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-7e6c9fa00ccb0459ece8be8bb7c22332-deplobbc6d --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1752194818 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1752194818/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-7e6c9fa00ccb0459ece8be8bb7c22332-deplobbc6d:/code/chaiverse_profiler_1752195269 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-7e6c9fa00ccb0459ece8be8bb7c22332-deplobbc6d --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1752195269 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1752195269/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Defaulted container "kserve-container" out of: kserve-container, queue-proxy\nUnable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<00:29, 6.77it/s]\n 1%| | 2/200 [00:03<07:05, 2.15s/it]\n 2%|▏ | 3/200 [00:07<08:59, 2.74s/it]\n 2%|▏ | 4/200 [00:07<05:34, 1.71s/it]\n 2%|▎ | 5/200 [00:10<07:42, 2.37s/it]\n 3%|▎ | 6/200 [00:10<05:12, 1.61s/it]\n 4%|▎ | 7/200 [00:14<07:12, 2.24s/it]\n 4%|▍ | 8/200 [00:14<05:01, 1.57s/it]\n 4%|▍ | 9/200 [00:14<03:42, 1.17s/it]\n 5%|▌ | 10/200 [00:18<05:51, 1.85s/it]\n 6%|▌ | 11/200 [00:18<04:17, 1.36s/it]\n 6%|▌ | 12/200 [00:21<06:11, 1.97s/it]\n 6%|▋ | 13/200 [00:22<04:31, 1.45s/it]\n 7%|▋ | 14/200 [00:22<03:23, 1.09s/it]\n 8%|▊ | 15/200 [00:25<05:34, 1.81s/it]\n 8%|▊ | 16/200 [00:29<07:09, 2.33s/it]\n 8%|▊ | 17/200 [00:29<05:05, 1.67s/it]\n 9%|▉ | 18/200 [00:33<06:40, 2.20s/it]\n 10%|▉ | 19/200 [00:36<07:50, 2.60s/it]\n 10%|█ | 20/200 [00:39<08:31, 2.84s/it]\n 10%|█ | 21/200 [00:43<09:01, 3.03s/it]\n 11%|█ | 22/200 [00:46<09:19, 3.14s/it]\n 12%|█▏ | 23/200 [00:50<09:33, 3.24s/it]\n 12%|█▏ | 24/200 [00:50<06:45, 2.30s/it]\n 12%|█▎ | 25/200 [00:53<07:51, 2.69s/it]\n 13%|█▎ | 26/200 [00:57<08:29, 2.93s/it]\n 14%|█▎ | 27/200 [01:00<08:55, 3.09s/it]\n 14%|█▍ | 28/200 [01:04<09:08, 3.19s/it]\n 14%|█▍ | 29/200 [01:04<06:28, 2.27s/it]\n 15%|█▌ | 30/200 [01:04<04:45, 1.68s/it]\n 16%|█▌ | 31/200 [01:08<06:14, 2.22s/it]\n 16%|█▌ | 32/200 [01:11<07:10, 2.56s/it]\n 16%|█▋ | 33/200 [01:11<05:13, 1.88s/it]\n 17%|█▋ | 34/200 [01:15<06:28, 2.34s/it]\n 18%|█▊ | 35/200 [01:15<04:43, 1.72s/it]\n 18%|█▊ | 36/200 [01:15<03:31, 1.29s/it]\n 18%|█▊ | 37/200 [01:16<02:41, 1.01it/s]\n 19%|█▉ | 38/200 [01:19<04:37, 1.71s/it]\n 20%|█▉ | 39/200 [01:19<03:26, 1.28s/it]\n 20%|██ | 40/200 [01:23<05:10, 1.94s/it]\n 20%|██ | 41/200 [01:26<06:17, 2.37s/it]\n 21%|██ | 42/200 [01:26<04:35, 1.74s/it]\n 22%|██▏ | 43/200 [01:27<03:25, 1.31s/it]\n 22%|██▏ | 44/200 [01:27<02:36, 1.01s/it]\n 22%|██▎ | 45/200 [01:30<04:27, 1.73s/it]\n 23%|██▎ | 46/200 [01:31<03:12, 1.25s/it]\n 24%|██▎ | 47/200 [01:34<04:50, 1.90s/it]\n 24%|██▍ | 48/200 [01:34<03:33, 1.40s/it]\n 24%|██▍ | 49/200 [01:35<02:41, 1.07s/it]\n 25%|██▌ | 50/200 [01:35<02:06, 1.18it/s]\n 26%|██▌ | 51/200 [01:38<04:02, 1.63s/it]\n 26%|██▌ | 52/200 [01:42<05:18, 2.15s/it]\n 26%|██▋ | 53/200 [01:42<03:53, 1.59s/it]\n 27%|██▋ | 54/200 [01:45<05:11, 2.13s/it]\n 28%|██▊ | 55/200 [01:49<06:04, 2.51s/it]\n 28%|██▊ | 56/200 [01:52<06:44, 2.81s/it]\n 28%|██▊ | 57/200 [01:56<07:05, 2.98s/it]\n 29%|██▉ | 58/200 [01:59<07:20, 3.10s/it]\n 30%|██▉ | 59/200 [02:02<07:30, 3.19s/it]\n 30%|███ | 60/200 [02:06<07:35, 3.25s/it]\n 30%|███ | 61/200 [02:09<07:41, 3.32s/it]\n 31%|███ | 62/200 [02:13<07:41, 3.34s/it]\n 32%|███▏ | 63/200 [02:16<07:38, 3.35s/it]\n 32%|███▏ | 64/200 [02:19<07:36, 3.36s/it]\n 32%|███▎ | 65/200 [02:23<07:33, 3.36s/it]\n 33%|███▎ | 66/200 [02:23<05:20, 2.39s/it]\n 34%|███▎ | 67/200 [02:26<05:58, 2.70s/it]\n 34%|███▍ | 68/200 [02:30<06:29, 2.95s/it]\n 34%|███▍ | 69/200 [02:33<06:43, 3.08s/it]\n 35%|███▌ | 70/200 [02:37<06:53, 3.18s/it]\n 36%|███▌ | 71/200 [02:37<04:51, 2.26s/it]\n 36%|███▌ | 72/200 [02:40<05:37, 2.64s/it]\n 36%|███▋ | 73/200 [02:44<06:05, 2.88s/it]\n 37%|███▋ | 74/200 [02:44<04:18, 2.05s/it]\n 38%|███▊ | 75/200 [02:47<05:10, 2.49s/it]\n 38%|███▊ | 76/200 [02:51<05:46, 2.79s/it]\n 38%|███▊ | 77/200 [02:54<06:07, 2.99s/it]\n 39%|███▉ | 78/200 [02:58<06:18, 3.10s/it]\n 40%|███▉ | 79/200 [02:58<04:27, 2.21s/it]\n 40%|████ | 80/200 [02:58<03:16, 1.63s/it]\n 40%|████ | 81/200 [03:02<04:19, 2.18s/it]\n 41%|████ | 82/200 [03:02<03:09, 1.61s/it]\n 42%|████▏ | 83/200 [03:02<02:21, 1.21s/it]\n 42%|████▏ | 84/200 [03:06<03:36, 1.87s/it]\n 42%|████▎ | 85/200 [03:06<02:39, 1.39s/it]\n 43%|████▎ | 86/200 [03:09<03:48, 2.00s/it]\n 44%|████▎ | 87/200 [03:10<02:47, 1.48s/it]\n 44%|████▍ | 88/200 [03:13<03:49, 2.05s/it]\n 44%|████▍ | 89/200 [03:16<04:34, 2.47s/it]\n 45%|████▌ | 90/200 [03:20<05:02, 2.75s/it]\n 46%|████▌ | 91/200 [03:20<03:38, 2.01s/it]\n 46%|████▌ | 92/200 [03:20<02:40, 1.49s/it]\n 46%|████▋ | 93/200 [03:24<03:42, 2.08s/it]\n 47%|████▋ | 94/200 [03:24<02:43, 1.54s/it]\n 48%|████▊ | 95/200 [03:27<03:40, 2.10s/it]\n 48%|████▊ | 96/200 [03:31<04:21, 2.51s/it]\n 48%|████▊ | 97/200 [03:34<04:48, 2.80s/it]\n 49%|████▉ | 98/200 [03:38<05:09, 3.04s/it]\n 50%|████▉ | 99/200 [03:38<03:38, 2.16s/it]\n 50%|█████ | 100/200 [03:42<04:19, 2.60s/it]\n 50%|█████ | 101/200 [03:42<03:03, 1.86s/it]\n 51%|█████ | 102/200 [03:42<02:15, 1.39s/it]\n 52%|█████▏ | 103/200 [03:46<03:13, 2.00s/it]\n 52%|█████▏ | 104/200 [03:49<03:55, 2.45s/it]\n 52%|█████▎ | 105/200 [03:49<02:51, 1.80s/it]\n 53%|█████▎ | 106/200 [03:53<03:35, 2.30s/it]\n 54%|█████▎ | 107/200 [03:53<02:36, 1.69s/it]\n 54%|█████▍ | 108/200 [03:56<03:22, 2.20s/it]\n 55%|█████▍ | 109/200 [04:00<03:54, 2.58s/it]\n 55%|█████▌ | 110/200 [04:03<04:15, 2.84s/it]\n 56%|█████▌ | 111/200 [04:07<04:26, 2.99s/it]\n 56%|█████▌ | 112/200 [04:10<04:34, 3.11s/it]\n 56%|█████▋ | 113/200 [04:10<03:16, 2.26s/it]\n 57%|█████▋ | 114/200 [04:14<03:45, 2.63s/it]\n 57%|█████▊ | 115/200 [04:14<02:43, 1.92s/it]\n 58%|█████▊ | 116/200 [04:14<02:00, 1.43s/it]\n 58%|█████▊ | 117/200 [04:18<02:47, 2.02s/it]\n 59%|█████▉ | 118/200 [04:21<03:24, 2.49s/it]\n 60%|█████▉ | 119/200 [04:25<03:43, 2.76s/it]\n 60%|██████ | 120/200 [04:25<02:37, 1.97s/it]\n 60%|██████ | 121/200 [04:28<03:10, 2.41s/it]\n 61%|██████ | 122/200 [04:32<03:34, 2.75s/it]\n 62%|██████▏ | 123/200 [04:35<03:47, 2.95s/it]\n 62%|██████▏ | 124/200 [04:39<03:53, 3.07s/it]\n 62%|██████▎ | 125/200 [04:42<03:57, 3.17s/it]\n 63%|██████▎ | 126/200 [04:42<02:46, 2.26s/it]\n 64%|██████▎ | 127/200 [04:43<02:02, 1.67s/it]\n 64%|██████▍ | 128/200 [04:43<01:31, 1.27s/it]\n 64%|██████▍ | 129/200 [04:46<02:15, 1.91s/it]\n 65%|██████▌ | 130/200 [04:50<02:44, 2.36s/it]\n 66%|██████▌ | 131/200 [04:53<03:04, 2.67s/it]\n 66%|██████▌ | 132/200 [04:53<02:12, 1.95s/it]\n 66%|██████▋ | 133/200 [04:54<01:36, 1.45s/it]\n 67%|██████▋ | 134/200 [04:57<02:13, 2.02s/it]\n 68%|██████▊ | 135/200 [05:00<02:39, 2.45s/it]\n 68%|██████▊ | 136/200 [05:01<01:55, 1.80s/it]\n 68%|██████▊ | 137/200 [05:01<01:24, 1.35s/it]\n 69%|██████▉ | 138/200 [05:01<01:03, 1.03s/it]\n 70%|██████▉ | 139/200 [05:05<01:46, 1.75s/it]\n 70%|███████ | 140/200 [05:08<02:15, 2.25s/it]\n 70%|███████ | 141/200 [05:11<02:32, 2.59s/it]\n 71%|███████ | 142/200 [05:15<02:44, 2.83s/it]\n 72%|███████▏ | 143/200 [05:18<02:51, 3.01s/it]\n 72%|███████▏ | 144/200 [05:18<02:00, 2.15s/it]\n 72%|███████▎ | 145/200 [05:19<01:27, 1.59s/it]\n 73%|███████▎ | 146/200 [05:22<01:58, 2.20s/it]\n 74%|███████▎ | 147/200 [05:26<02:16, 2.57s/it]\n 74%|███████▍ | 148/200 [05:29<02:25, 2.80s/it]\n 74%|███████▍ | 149/200 [05:33<02:34, 3.03s/it]\n 75%|███████▌ | 150/200 [05:36<02:37, 3.15s/it]\n 76%|███████▌ | 151/200 [05:36<01:50, 2.25s/it]\n 76%|███████▌ | 152/200 [05:37<01:19, 1.66s/it]\n 76%|███████▋ | 153/200 [05:37<00:58, 1.25s/it]\n 77%|███████▋ | 154/200 [05:37<00:44, 1.04it/s]\n 78%|███████▊ | 155/200 [05:41<01:16, 1.71s/it]\n 78%|███████▊ | 156/200 [05:41<00:56, 1.27s/it]\n 78%|███████▊ | 157/200 [05:44<01:23, 1.93s/it]\n 79%|███████▉ | 158/200 [05:45<01:00, 1.44s/it]\n 80%|███████▉ | 159/200 [05:45<00:46, 1.12s/it]\n 80%|████████ | 160/200 [05:48<01:13, 1.83s/it]\n 80%|████████ | 161/200 [05:49<00:53, 1.36s/it]\n 81%|████████ | 162/200 [05:49<00:37, 1.01it/s]\n 82%|████████▏ | 163/200 [05:52<01:05, 1.76s/it]\n 82%|████████▏ | 164/200 [05:53<00:45, 1.27s/it]\n 82%|████████▎ | 165/200 [05:53<00:34, 1.02it/s]\n 83%|████████▎ | 166/200 [05:53<00:26, 1.29it/s]\n 84%|████████▎ | 167/200 [05:53<00:20, 1.60it/s]\n 84%|████████▍ | 168/200 [05:57<00:46, 1.46s/it]\n 84%|████████▍ | 169/200 [06:00<01:03, 2.06s/it]\n 85%|████████▌ | 170/200 [06:04<01:14, 2.49s/it]\n 86%|████████▌ | 171/200 [06:04<00:52, 1.82s/it]\n 86%|████████▌ | 172/200 [06:04<00:38, 1.36s/it]\n 86%|████████▋ | 173/200 [06:05<00:28, 1.04s/it]\n 87%|████████▋ | 174/200 [06:08<00:45, 1.76s/it]\n 88%|████████▊ | 175/200 [06:08<00:32, 1.32s/it]\n 88%|████████▊ | 176/200 [06:12<00:48, 2.01s/it]\n 88%|████████▊ | 177/200 [06:12<00:34, 1.50s/it]\n 89%|████████▉ | 178/200 [06:12<00:23, 1.09s/it]\n 90%|████████▉ | 179/200 [06:13<00:17, 1.17it/s]\n 90%|█████████ | 180/200 [06:13<00:13, 1.45it/s]\n 90%|█████████ | 181/200 [06:13<00:10, 1.73it/s]\n 91%|█████████ | 182/200 [06:14<00:08, 2.02it/s]\n 92%|█████████▏| 183/200 [06:17<00:23, 1.35s/it]\n 92%|█████████▏| 184/200 [06:17<00:16, 1.03s/it]\n 92%|█████████▎| 185/200 [06:21<00:26, 1.74s/it]\n 93%|█████████▎| 186/200 [06:21<00:18, 1.30s/it]\n 94%|█████████▎| 187/200 [06:24<00:25, 1.93s/it]\n 94%|█████████▍| 188/200 [06:28<00:28, 2.37s/it]\n 94%|█████████▍| 189/200 [06:31<00:29, 2.68s/it]\n 95%|█████████▌| 190/200 [06:35<00:29, 2.91s/it]\n 96%|█████████▌| 191/200 [06:35<00:19, 2.12s/it]\n 96%|█████████▌| 192/200 [06:35<00:12, 1.52s/it]\n 96%|█████████▋| 193/200 [06:38<00:14, 2.10s/it]\n 97%|█████████▋| 194/200 [06:39<00:09, 1.55s/it]\n 98%|█████████▊| 195/200 [06:39<00:05, 1.18s/it]\n 98%|█████████▊| 196/200 [06:39<00:03, 1.09it/s]\n 98%|█████████▊| 197/200 [06:43<00:04, 1.66s/it]\n 99%|█████████▉| 198/200 [06:46<00:04, 2.21s/it]\n100%|█████████▉| 199/200 [06:50<00:02, 2.62s/it]\n100%|██████████| 200/200 [06:50<00:00, 1.87s/it]\n100%|██████████| 200/200 [06:50<00:00, 2.05s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1752195269/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1752195269/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1752195269/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1752195269/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 410.41506242752075\nerrors 87\nmean length: 1.695\n\nthroughput (request / second): 0.4873115494763791\nthroughput (character / second): 0.8259930763624626\naverage request duration (s) 2.05195032954216\n50%ile request duration (s) 3.3786648511886597\n75%ile request duration (s) 3.442221999168396\n90%ile request duration (s) 3.4938514709472654\n95%ile request duration (s) 3.5542217016220095\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama-8b-nis-ret-96788-v1-profiler is running
Tearing down inference service chaiml-llama-8b-nis-ret-96788-v1-profiler
Service chaiml-llama-8b-nis-ret-96788-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 3.37s
Shutdown handler de-registered
chaiml-llama-8b-nis-ret_96788_v1 status is now inactive due to auto deactivation removed underperforming models
chaiml-llama-8b-nis-ret_96788_v1 status is now torndown due to DeploymentManager action