Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-llama-8b-nis-ft-58163-v1-mkmlizer
Waiting for job on chaiml-llama-8b-nis-ft-58163-v1-mkmlizer to finish
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ Version: 0.29.15 ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ belonging to: ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: Downloaded to shared memory in 28.385s
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: Checking if ChaiML/llama_8b_nis_ft_new1m_512seq_v1562 already exists in ChaiML
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmptrwo0hyr, device:0
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Retrying (%r) after connection broken by '%r': %s
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: quantized model in 20.078s
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: Processed model ChaiML/llama_8b_nis_ft_new1m_512seq_v1562 in 48.464s
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-58163-v1/nvidia
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-58163-v1/nvidia/config.json
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-58163-v1/nvidia/special_tokens_map.json
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-58163-v1/nvidia/tokenizer_config.json
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-58163-v1/nvidia/tokenizer.json
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-58163-v1/nvidia/flywheel_model.0.safetensors
chaiml-llama-8b-nis-ft-58163-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 2%|▏ | 5/291 [00:00<00:09, 31.54it/s]
Loading 0: 4%|▍ | 13/291 [00:00<00:05, 51.46it/s]
Loading 0: 7%|▋ | 19/291 [00:00<00:05, 46.28it/s]
Loading 0: 8%|▊ | 24/291 [00:00<00:05, 46.46it/s]
Loading 0: 11%|█ | 31/291 [00:00<00:04, 52.86it/s]
Loading 0: 13%|█▎ | 37/291 [00:00<00:05, 47.62it/s]
Loading 0: 14%|█▍ | 42/291 [00:00<00:05, 45.24it/s]
Loading 0: 17%|█▋ | 49/291 [00:01<00:04, 51.21it/s]
Loading 0: 19%|█▉ | 55/291 [00:01<00:04, 47.48it/s]
Loading 0: 21%|██ | 60/291 [00:01<00:05, 45.23it/s]
Loading 0: 23%|██▎ | 66/291 [00:01<00:04, 48.73it/s]
Loading 0: 25%|██▍ | 72/291 [00:01<00:04, 50.38it/s]
Loading 0: 27%|██▋ | 78/291 [00:01<00:04, 44.16it/s]
Loading 0: 29%|██▊ | 83/291 [00:01<00:06, 31.18it/s]
Loading 0: 30%|██▉ | 87/291 [00:02<00:06, 31.38it/s]
Loading 0: 32%|███▏ | 94/291 [00:02<00:05, 39.01it/s]
Loading 0: 34%|███▍ | 99/291 [00:02<00:04, 41.01it/s]
Loading 0: 36%|███▌ | 104/291 [00:02<00:05, 35.35it/s]
Loading 0: 38%|███▊ | 112/291 [00:02<00:04, 43.62it/s]
Loading 0: 40%|████ | 117/291 [00:02<00:04, 43.43it/s]
Loading 0: 42%|████▏ | 122/291 [00:02<00:04, 35.65it/s]
Loading 0: 44%|████▍ | 129/291 [00:03<00:03, 42.70it/s]
Loading 0: 46%|████▌ | 134/291 [00:03<00:03, 43.27it/s]
Loading 0: 48%|████▊ | 139/291 [00:03<00:03, 44.80it/s]
Loading 0: 49%|████▉ | 144/291 [00:03<00:03, 45.77it/s]
Loading 0: 51%|█████ | 149/291 [00:03<00:03, 38.56it/s]
Loading 0: 54%|█████▍ | 157/291 [00:03<00:02, 47.32it/s]
Loading 0: 56%|█████▌ | 163/291 [00:03<00:02, 43.91it/s]
Loading 0: 58%|█████▊ | 168/291 [00:03<00:02, 42.67it/s]
Loading 0: 60%|██████ | 175/291 [00:04<00:02, 48.94it/s]
Loading 0: 62%|██████▏ | 181/291 [00:04<00:02, 39.69it/s]
Loading 0: 64%|██████▍ | 187/291 [00:04<00:03, 32.09it/s]
Loading 0: 66%|██████▌ | 191/291 [00:04<00:03, 32.95it/s]
Loading 0: 67%|██████▋ | 195/291 [00:04<00:02, 32.62it/s]
Loading 0: 69%|██████▉ | 201/291 [00:04<00:02, 38.48it/s]
Loading 0: 71%|███████ | 206/291 [00:04<00:02, 40.87it/s]
Loading 0: 73%|███████▎ | 211/291 [00:05<00:01, 42.60it/s]
Loading 0: 74%|███████▍ | 216/291 [00:05<00:01, 44.47it/s]
Loading 0: 76%|███████▌ | 221/291 [00:05<00:01, 37.31it/s]
Loading 0: 79%|███████▊ | 229/291 [00:05<00:01, 46.63it/s]
Loading 0: 81%|████████ | 235/291 [00:05<00:01, 43.19it/s]
Loading 0: 82%|████████▏ | 240/291 [00:05<00:01, 43.04it/s]
Loading 0: 85%|████████▍ | 247/291 [00:05<00:00, 47.23it/s]
Loading 0: 87%|████████▋ | 252/291 [00:05<00:00, 45.99it/s]
Loading 0: 88%|████████▊ | 257/291 [00:06<00:00, 38.61it/s]
Loading 0: 91%|█████████ | 264/291 [00:06<00:00, 45.32it/s]
Loading 0: 92%|█████████▏| 269/291 [00:06<00:00, 45.58it/s]
Loading 0: 94%|█████████▍| 274/291 [00:06<00:00, 46.19it/s]
Loading 0: 96%|█████████▌| 280/291 [00:06<00:00, 43.82it/s]
Loading 0: 98%|█████████▊| 285/291 [00:06<00:00, 44.48it/s]
Loading 0: 100%|█████████▉| 290/291 [00:07<00:00, 32.18it/s]
Job chaiml-llama-8b-nis-ft-58163-v1-mkmlizer completed after 74.66s with status: succeeded
Stopping job with name chaiml-llama-8b-nis-ft-58163-v1-mkmlizer
Pipeline stage MKMLizer completed in 75.22s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-llama-8b-nis-ft-58163-v1
Waiting for inference service chaiml-llama-8b-nis-ft-58163-v1 to be ready
Inference service chaiml-llama-8b-nis-ft-58163-v1 ready after 221.25563597679138s
Pipeline stage MKMLDeployer completed in 221.99s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.046650648117065s
Received healthy response to inference request in 3.335592031478882s
Received healthy response to inference request in 3.205475330352783s
Received healthy response to inference request in 3.533958911895752s
Received healthy response to inference request in 2.3678932189941406s
5 requests
0 failed requests
5th percentile: 2.5354096412658693
10th percentile: 2.7029260635375976
20th percentile: 3.0379589080810545
30th percentile: 3.231498670578003
40th percentile: 3.2835453510284425
50th percentile: 3.335592031478882
60th percentile: 3.41493878364563
70th percentile: 3.494285535812378
80th percentile: 3.836497259140015
90th percentile: 4.44157395362854
95th percentile: 4.744112300872803
99th percentile: 4.986142978668213
mean time: 3.497914028167725
Pipeline stage StressChecker completed in 19.61s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.73s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.66s
Shutdown handler de-registered
chaiml-llama-8b-nis-ft-_58163_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama-8b-nis-ft-58163-v1-profiler
Waiting for inference service chaiml-llama-8b-nis-ft-58163-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama-8b-nis-ft-58163-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 3.64s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama-8b-nis-ft-58163-v1-profiler
Waiting for inference service chaiml-llama-8b-nis-ft-58163-v1-profiler to be ready
Inference service chaiml-llama-8b-nis-ft-58163-v1-profiler ready after 222.19498872756958s
Pipeline stage MKMLProfilerDeployer completed in 222.71s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-50ecc0fb628112bb80f315d07aa75069-deplofzcv2:/code/chaiverse_profiler_1751591228 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-50ecc0fb628112bb80f315d07aa75069-deplofzcv2 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1751591228 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1751591228/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-50ecc0fb628112bb80f315d07aa75069-deplofzcv2:/code/chaiverse_profiler_1751591691 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-50ecc0fb628112bb80f315d07aa75069-deplofzcv2 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1751591691 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1751591691/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-50ecc0fb628112bb80f315d07aa75069-deplofzcv2:/code/chaiverse_profiler_1751592131 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-50ecc0fb628112bb80f315d07aa75069-deplofzcv2 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1751592131 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1751592131/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Defaulted container "kserve-container" out of: kserve-container, queue-proxy\nUnable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:03<11:21, 3.43s/it]\n 1%| | 2/200 [00:03<04:53, 1.48s/it]\n 2%|▏ | 3/200 [00:07<07:52, 2.40s/it]\n 2%|▏ | 4/200 [00:07<05:06, 1.56s/it]\n 2%|▎ | 5/200 [00:10<07:26, 2.29s/it]\n 3%|▎ | 6/200 [00:11<05:01, 1.55s/it]\n 4%|▎ | 7/200 [00:14<07:00, 2.18s/it]\n 4%|▍ | 8/200 [00:14<05:02, 1.58s/it]\n 4%|▍ | 9/200 [00:18<06:53, 2.17s/it]\n 5%|▌ | 10/200 [00:21<08:03, 2.55s/it]\n 6%|▌ | 11/200 [00:25<08:53, 2.83s/it]\n 6%|▌ | 12/200 [00:28<09:33, 3.05s/it]\n 6%|▋ | 13/200 [00:32<09:54, 3.18s/it]\n 7%|▋ | 14/200 [00:35<10:04, 3.25s/it]\n 8%|▊ | 15/200 [00:39<10:12, 3.31s/it]\n 8%|▊ | 16/200 [00:39<07:12, 2.35s/it]\n 8%|▊ | 17/200 [00:42<08:11, 2.69s/it]\n 9%|▉ | 18/200 [00:46<08:56, 2.95s/it]\n 10%|▉ | 19/200 [00:46<06:20, 2.10s/it]\n 10%|█ | 20/200 [00:49<07:30, 2.50s/it]\n 10%|█ | 21/200 [00:53<08:17, 2.78s/it]\n 11%|█ | 22/200 [00:56<08:49, 2.97s/it]\n 12%|█▏ | 23/200 [00:56<06:21, 2.16s/it]\n 12%|█▏ | 24/200 [00:57<04:40, 1.59s/it]\n 12%|█▎ | 25/200 [01:00<06:15, 2.15s/it]\n 13%|█▎ | 26/200 [01:00<04:34, 1.58s/it]\n 14%|█▎ | 27/200 [01:04<06:12, 2.15s/it]\n 14%|█▍ | 28/200 [01:04<04:33, 1.59s/it]\n 14%|█▍ | 29/200 [01:04<03:23, 1.19s/it]\n 15%|█▌ | 30/200 [01:08<05:15, 1.86s/it]\n 16%|█▌ | 31/200 [01:08<03:53, 1.38s/it]\n 16%|█▌ | 32/200 [01:11<05:36, 2.00s/it]\n 16%|█▋ | 33/200 [01:12<04:06, 1.48s/it]\n 17%|█▋ | 34/200 [01:12<03:04, 1.11s/it]\n 18%|█▊ | 35/200 [01:15<04:57, 1.80s/it]\n 18%|█▊ | 36/200 [01:16<03:39, 1.34s/it]\n 18%|█▊ | 37/200 [01:19<05:22, 1.98s/it]\n 19%|█▉ | 38/200 [01:23<06:31, 2.42s/it]\n 20%|█▉ | 39/200 [01:26<07:21, 2.74s/it]\n 20%|██ | 40/200 [01:26<05:19, 2.00s/it]\n 20%|██ | 41/200 [01:30<06:23, 2.41s/it]\n 21%|██ | 42/200 [01:33<07:08, 2.71s/it]\n 22%|██▏ | 43/200 [01:33<05:09, 1.97s/it]\n 22%|██▏ | 44/200 [01:34<03:48, 1.47s/it]\n 22%|██▎ | 45/200 [01:37<05:17, 2.05s/it]\n 23%|██▎ | 46/200 [01:37<03:54, 1.52s/it]\n 24%|██▎ | 47/200 [01:37<02:48, 1.10s/it]\n 24%|██▍ | 48/200 [01:41<04:41, 1.85s/it]\n 24%|██▍ | 49/200 [01:44<05:47, 2.30s/it]\n 25%|██▌ | 50/200 [01:45<04:15, 1.70s/it]\n 26%|██▌ | 51/200 [01:45<03:10, 1.28s/it]\n 26%|██▌ | 52/200 [01:48<04:45, 1.93s/it]\n 26%|██▋ | 53/200 [01:52<06:02, 2.47s/it]\n 27%|██▋ | 54/200 [01:56<06:43, 2.77s/it]\n 28%|██▊ | 55/200 [01:56<04:46, 1.97s/it]\n 28%|██▊ | 56/200 [01:56<03:31, 1.47s/it]\n 28%|██▊ | 57/200 [01:56<02:38, 1.11s/it]\n 29%|██▉ | 58/200 [01:57<02:02, 1.16it/s]\n 30%|██▉ | 59/200 [02:00<03:49, 1.63s/it]\n 30%|███ | 60/200 [02:03<05:05, 2.18s/it]\n 30%|███ | 61/200 [02:07<05:55, 2.56s/it]\n 31%|███ | 62/200 [02:10<06:29, 2.83s/it]\n 32%|███▏ | 63/200 [02:11<04:42, 2.06s/it]\n 32%|███▏ | 64/200 [02:14<05:37, 2.48s/it]\n 32%|███▎ | 65/200 [02:18<06:12, 2.76s/it]\n 33%|███▎ | 66/200 [02:18<04:30, 2.02s/it]\n 34%|███▎ | 67/200 [02:21<05:24, 2.44s/it]\n 34%|███▍ | 68/200 [02:21<03:55, 1.79s/it]\n 34%|███▍ | 69/200 [02:25<05:01, 2.30s/it]\n 35%|███▌ | 70/200 [02:25<03:39, 1.69s/it]\n 36%|███▌ | 71/200 [02:29<04:45, 2.21s/it]\n 36%|███▌ | 72/200 [02:32<05:32, 2.59s/it]\n 36%|███▋ | 73/200 [02:36<06:04, 2.87s/it]\n 37%|███▋ | 74/200 [02:36<04:18, 2.05s/it]\n 38%|███▊ | 75/200 [02:39<05:13, 2.51s/it]\n 38%|███▊ | 76/200 [02:43<05:44, 2.78s/it]\n 38%|███▊ | 77/200 [02:46<06:04, 2.96s/it]\n 39%|███▉ | 78/200 [02:46<04:21, 2.15s/it]\n 40%|███▉ | 79/200 [02:50<05:07, 2.54s/it]\n 40%|████ | 80/200 [02:53<05:37, 2.81s/it]\n 40%|████ | 81/200 [02:53<03:58, 2.00s/it]\n 41%|████ | 82/200 [02:57<04:51, 2.47s/it]\n 42%|████▏ | 83/200 [02:57<03:32, 1.82s/it]\n 42%|████▏ | 84/200 [03:01<04:34, 2.36s/it]\n 42%|████▎ | 85/200 [03:04<05:09, 2.69s/it]\n 43%|████▎ | 86/200 [03:08<05:35, 2.95s/it]\n 44%|████▎ | 87/200 [03:08<03:57, 2.10s/it]\n 44%|████▍ | 88/200 [03:12<04:41, 2.51s/it]\n 44%|████▍ | 89/200 [03:15<05:14, 2.83s/it]\n 45%|████▌ | 90/200 [03:18<05:28, 2.98s/it]\n 46%|████▌ | 91/200 [03:22<05:40, 3.13s/it]\n 46%|████▌ | 92/200 [03:22<04:05, 2.27s/it]\n 46%|████▋ | 93/200 [03:22<02:57, 1.66s/it]\n 47%|████▋ | 94/200 [03:26<03:53, 2.20s/it]\n 48%|████▊ | 95/200 [03:29<04:35, 2.62s/it]\n 48%|████▊ | 96/200 [03:33<04:58, 2.87s/it]\n 48%|████▊ | 97/200 [03:36<05:13, 3.04s/it]\n 49%|████▉ | 98/200 [03:37<03:41, 2.17s/it]\n 50%|████▉ | 99/200 [03:40<04:17, 2.55s/it]\n 50%|█████ | 100/200 [03:43<04:44, 2.85s/it]\n 50%|█████ | 101/200 [03:47<05:00, 3.03s/it]\n 51%|█████ | 102/200 [03:47<03:31, 2.16s/it]\n 52%|█████▏ | 103/200 [03:47<02:34, 1.60s/it]\n 52%|█████▏ | 104/200 [03:51<03:29, 2.18s/it]\n 52%|█████▎ | 105/200 [03:54<04:06, 2.60s/it]\n 53%|█████▎ | 106/200 [03:55<02:55, 1.86s/it]\n 54%|█████▎ | 107/200 [03:55<02:09, 1.39s/it]\n 54%|█████▍ | 108/200 [03:55<01:37, 1.06s/it]\n 55%|█████▍ | 109/200 [03:55<01:15, 1.21it/s]\n 55%|█████▌ | 110/200 [03:59<02:25, 1.62s/it]\n 56%|█████▌ | 111/200 [03:59<01:48, 1.22s/it]\n 56%|█████▌ | 112/200 [04:03<02:47, 1.90s/it]\n 56%|█████▋ | 113/200 [04:06<03:24, 2.36s/it]\n 57%|█████▋ | 114/200 [04:10<03:51, 2.69s/it]\n 57%|█████▊ | 115/200 [04:13<04:05, 2.89s/it]\n 58%|█████▊ | 116/200 [04:16<04:16, 3.06s/it]\n 58%|█████▊ | 117/200 [04:20<04:22, 3.17s/it]\n 59%|█████▉ | 118/200 [04:20<03:09, 2.31s/it]\n 60%|█████▉ | 119/200 [04:24<03:36, 2.67s/it]\n 60%|██████ | 120/200 [04:27<03:54, 2.94s/it]\n 60%|██████ | 121/200 [04:31<04:02, 3.07s/it]\n 61%|██████ | 122/200 [04:34<04:08, 3.19s/it]\n 62%|██████▏ | 123/200 [04:38<04:13, 3.29s/it]\n 62%|██████▏ | 124/200 [04:41<04:12, 3.32s/it]\n 62%|██████▎ | 125/200 [04:41<02:59, 2.40s/it]\n 63%|██████▎ | 126/200 [04:42<02:10, 1.76s/it]\n 64%|██████▎ | 127/200 [04:45<02:45, 2.27s/it]\n 64%|██████▍ | 128/200 [04:45<01:59, 1.66s/it]\n 64%|██████▍ | 129/200 [04:49<02:36, 2.20s/it]\n 65%|██████▌ | 130/200 [04:49<01:54, 1.63s/it]\n 66%|██████▌ | 131/200 [04:52<02:29, 2.17s/it]\n 66%|██████▌ | 132/200 [04:56<02:53, 2.55s/it]\n 66%|██████▋ | 133/200 [04:56<02:02, 1.83s/it]\n 67%|██████▋ | 134/200 [05:00<02:35, 2.36s/it]\n 68%|██████▊ | 135/200 [05:03<02:54, 2.68s/it]\n 68%|██████▊ | 136/200 [05:03<02:02, 1.91s/it]\n 68%|██████▊ | 137/200 [05:07<02:33, 2.44s/it]\n 69%|██████▉ | 138/200 [05:07<01:48, 1.74s/it]\n 70%|██████▉ | 139/200 [05:10<02:18, 2.28s/it]\n 70%|███████ | 140/200 [05:11<01:37, 1.63s/it]\n 70%|███████ | 141/200 [05:14<02:07, 2.17s/it]\n 71%|███████ | 142/200 [05:14<01:32, 1.59s/it]\n 72%|███████▏ | 143/200 [05:18<02:04, 2.18s/it]\n 72%|███████▏ | 144/200 [05:21<02:24, 2.58s/it]\n 72%|███████▎ | 145/200 [05:25<02:36, 2.85s/it]\n 73%|███████▎ | 146/200 [05:25<01:49, 2.03s/it]\n 74%|███████▎ | 147/200 [05:28<02:12, 2.49s/it]\n 74%|███████▍ | 148/200 [05:29<01:32, 1.78s/it]\n 74%|███████▍ | 149/200 [05:32<01:58, 2.33s/it]\n 75%|███████▌ | 150/200 [05:36<02:13, 2.66s/it]\n 76%|███████▌ | 151/200 [05:39<02:21, 2.90s/it]\n 76%|███████▌ | 152/200 [05:39<01:39, 2.06s/it]\n 76%|███████▋ | 153/200 [05:39<01:11, 1.53s/it]\n 77%|███████▋ | 154/200 [05:40<00:52, 1.15s/it]\n 78%|███████▊ | 155/200 [05:43<01:22, 1.84s/it]\n 78%|███████▊ | 156/200 [05:47<01:41, 2.30s/it]\n 78%|███████▊ | 157/200 [05:50<01:53, 2.63s/it]\n 79%|███████▉ | 158/200 [05:53<02:00, 2.88s/it]\n 80%|███████▉ | 159/200 [05:54<01:25, 2.09s/it]\n 80%|████████ | 160/200 [05:54<01:01, 1.55s/it]\n 80%|████████ | 161/200 [05:57<01:21, 2.10s/it]\n 81%|████████ | 162/200 [06:01<01:34, 2.50s/it]\n 82%|████████▏ | 163/200 [06:01<01:07, 1.83s/it]\n 82%|████████▏ | 164/200 [06:05<01:24, 2.35s/it]\n 82%|████████▎ | 165/200 [06:05<01:00, 1.72s/it]\n 83%|████████▎ | 166/200 [06:08<01:15, 2.22s/it]\n 84%|████████▎ | 167/200 [06:08<00:53, 1.63s/it]\n 84%|████████▍ | 168/200 [06:12<01:10, 2.22s/it]\n 84%|████████▍ | 169/200 [06:16<01:21, 2.62s/it]\n 85%|████████▌ | 170/200 [06:19<01:26, 2.87s/it]\n 86%|████████▌ | 171/200 [06:23<01:28, 3.05s/it]\n 86%|████████▌ | 172/200 [06:23<01:00, 2.17s/it]\n 86%|████████▋ | 173/200 [06:23<00:43, 1.60s/it]\n 87%|████████▋ | 174/200 [06:26<00:56, 2.17s/it]\n 88%|████████▊ | 175/200 [06:30<01:04, 2.56s/it]\n 88%|████████▊ | 176/200 [06:30<00:43, 1.83s/it]\n 88%|████████▊ | 177/200 [06:30<00:31, 1.36s/it]\n 89%|████████▉ | 178/200 [06:34<00:43, 1.99s/it]\n 90%|████████▉ | 179/200 [06:34<00:30, 1.47s/it]\n 90%|█████████ | 180/200 [06:34<00:22, 1.11s/it]\n 90%|█████████ | 181/200 [06:38<00:34, 1.81s/it]\n 91%|█████████ | 182/200 [06:38<00:24, 1.34s/it]\n 92%|█████████▏| 183/200 [06:41<00:33, 1.97s/it]\n 92%|█████████▏| 184/200 [06:42<00:23, 1.45s/it]\n 92%|█████████▎| 185/200 [06:42<00:16, 1.10s/it]\n 93%|█████████▎| 186/200 [06:42<00:11, 1.18it/s]\n 94%|█████████▎| 187/200 [06:42<00:08, 1.49it/s]\n 94%|█████████▍| 188/200 [06:46<00:18, 1.51s/it]\n 94%|█████████▍| 189/200 [06:49<00:22, 2.08s/it]\n 95%|█████████▌| 190/200 [06:50<00:15, 1.53s/it]\n 96%|█████████▌| 191/200 [06:50<00:10, 1.16s/it]\n 96%|█████████▌| 192/200 [06:53<00:14, 1.85s/it]\n 96%|█████████▋| 193/200 [06:57<00:16, 2.35s/it]\n 97%|█████████▋| 194/200 [06:57<00:10, 1.72s/it]\n 98%|█████████▊| 195/200 [07:01<00:11, 2.25s/it]\n 98%|█████████▊| 196/200 [07:01<00:06, 1.61s/it]\n 98%|█████████▊| 197/200 [07:01<00:03, 1.20s/it]\n 99%|█████████▉| 198/200 [07:04<00:03, 1.88s/it]\n100%|█████████▉| 199/200 [07:05<00:01, 1.39s/it]\n100%|██████████| 200/200 [07:08<00:00, 2.02s/it]\n100%|██████████| 200/200 [07:08<00:00, 2.14s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1751592131/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1751592131/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1751592131/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1751592131/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 428.67575335502625\nerrors 82\nmean length: 1.77\n\nthroughput (request / second): 0.46655309621480134\nthroughput (character / second): 0.8257989803001984\naverage request duration (s) 2.1431937181949614\n50%ile request duration (s) 3.415279507637024\n75%ile request duration (s) 3.4672428965568542\n90%ile request duration (s) 3.5422811031341555\n95%ile request duration (s) 3.5778382658958434\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama-8b-nis-ft-58163-v1-profiler is running
Tearing down inference service chaiml-llama-8b-nis-ft-58163-v1-profiler
Service chaiml-llama-8b-nis-ft-58163-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 3.15s
Shutdown handler de-registered
chaiml-llama-8b-nis-ft-_58163_v1 status is now inactive due to auto deactivation removed underperforming models
chaiml-llama-8b-nis-ft-_58163_v1 status is now torndown due to DeploymentManager action