developer_uid: NischayDnk
submission_id: chaiml-llama-8b-nis-ft-_37925_v1
model_name: chaiml-llama-8b-nis-ft-_37925_v1
model_group: ChaiML/llama_8b_nis_ft_n
status: torndown
timestamp: 2025-07-04T01:41:14+00:00
num_battles: 7456
num_wins: 3716
celo_rating: 1287.57
family_friendly_score: 0.5432
family_friendly_standard_error: 0.007044625753012008
submission_type: basic
model_repo: ChaiML/llama_8b_nis_ft_new1mfilt_512seq_v2
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 512
max_output_tokens: 1
reward_model: default
display_name: chaiml-llama-8b-nis-ft-_37925_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: False
language_model: ChaiML/llama_8b_nis_ft_new1mfilt_512seq_v2
model_size: 8B
ranking_group: single
us_pacific_date: 2025-07-03
win_ratio: 0.49839055793991416
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-llama-8b-nis-ft-37925-v1-mkmlizer
Waiting for job on chaiml-llama-8b-nis-ft-37925-v1-mkmlizer to finish
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ Version: 0.29.15 ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ belonging to: ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ║ ║
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: Downloaded to shared memory in 29.398s
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: Checking if ChaiML/llama_8b_nis_ft_new1mfilt_512seq_v2 already exists in ChaiML
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpx2u4cc0e, device:0
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: quantized model in 19.953s
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: Processed model ChaiML/llama_8b_nis_ft_new1mfilt_512seq_v2 in 49.351s
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-37925-v1/nvidia
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-37925-v1/nvidia/config.json
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-37925-v1/nvidia/special_tokens_map.json
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-37925-v1/nvidia/tokenizer_config.json
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-37925-v1/nvidia/tokenizer.json
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-llama-8b-nis-ft-37925-v1/nvidia/flywheel_model.0.safetensors
chaiml-llama-8b-nis-ft-37925-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 2%|▏ | 5/291 [00:00<00:08, 32.95it/s] Loading 0: 4%|▍ | 12/291 [00:00<00:05, 50.39it/s] Loading 0: 6%|▌ | 18/291 [00:00<00:05, 50.71it/s] Loading 0: 8%|▊ | 24/291 [00:00<00:06, 40.69it/s] Loading 0: 11%|█ | 31/291 [00:00<00:05, 48.23it/s] Loading 0: 13%|█▎ | 37/291 [00:00<00:05, 44.64it/s] Loading 0: 14%|█▍ | 42/291 [00:00<00:05, 43.46it/s] Loading 0: 17%|█▋ | 49/291 [00:01<00:04, 49.16it/s] Loading 0: 19%|█▉ | 55/291 [00:01<00:05, 46.13it/s] Loading 0: 21%|██ | 60/291 [00:01<00:05, 44.93it/s] Loading 0: 23%|██▎ | 67/291 [00:01<00:04, 50.84it/s] Loading 0: 25%|██▌ | 73/291 [00:01<00:04, 47.02it/s] Loading 0: 27%|██▋ | 78/291 [00:01<00:04, 45.79it/s] Loading 0: 29%|██▊ | 83/291 [00:01<00:06, 32.28it/s] Loading 0: 30%|██▉ | 87/291 [00:02<00:06, 31.75it/s] Loading 0: 32%|███▏ | 94/291 [00:02<00:05, 38.43it/s] Loading 0: 34%|███▍ | 99/291 [00:02<00:04, 40.85it/s] Loading 0: 36%|███▌ | 104/291 [00:02<00:05, 34.83it/s] Loading 0: 38%|███▊ | 112/291 [00:02<00:04, 43.97it/s] Loading 0: 40%|████ | 117/291 [00:02<00:03, 45.18it/s] Loading 0: 42%|████▏ | 122/291 [00:02<00:04, 38.77it/s] Loading 0: 45%|████▍ | 130/291 [00:03<00:03, 47.38it/s] Loading 0: 47%|████▋ | 136/291 [00:03<00:03, 45.92it/s] Loading 0: 48%|████▊ | 141/291 [00:03<00:03, 45.36it/s] Loading 0: 51%|█████ | 147/291 [00:03<00:03, 47.56it/s] Loading 0: 52%|█████▏ | 152/291 [00:03<00:02, 46.56it/s] Loading 0: 54%|█████▍ | 158/291 [00:03<00:03, 40.67it/s] Loading 0: 57%|█████▋ | 166/291 [00:03<00:02, 48.54it/s] Loading 0: 59%|█████▉ | 172/291 [00:03<00:02, 43.66it/s] Loading 0: 62%|██████▏ | 179/291 [00:04<00:02, 48.35it/s] Loading 0: 64%|██████▎ | 185/291 [00:04<00:02, 49.90it/s] Loading 0: 66%|██████▌ | 191/291 [00:04<00:03, 31.89it/s] Loading 0: 67%|██████▋ | 196/291 [00:04<00:02, 33.65it/s] Loading 0: 69%|██████▉ | 201/291 [00:04<00:02, 36.39it/s] Loading 0: 71%|███████ | 206/291 [00:04<00:02, 37.79it/s] Loading 0: 73%|███████▎ | 211/291 [00:05<00:02, 39.69it/s] Loading 0: 75%|███████▍ | 217/291 [00:05<00:01, 39.64it/s] Loading 0: 76%|███████▋ | 222/291 [00:05<00:01, 39.88it/s] Loading 0: 79%|███████▊ | 229/291 [00:05<00:01, 46.24it/s] Loading 0: 81%|████████ | 235/291 [00:05<00:01, 44.61it/s] Loading 0: 82%|████████▏ | 240/291 [00:05<00:01, 43.29it/s] Loading 0: 85%|████████▍ | 247/291 [00:05<00:00, 48.76it/s] Loading 0: 87%|████████▋ | 253/291 [00:05<00:00, 45.00it/s] Loading 0: 89%|████████▊ | 258/291 [00:06<00:00, 44.73it/s] Loading 0: 91%|█████████ | 265/291 [00:06<00:00, 50.37it/s] Loading 0: 93%|█████████▎| 271/291 [00:06<00:00, 46.55it/s] Loading 0: 95%|█████████▍| 276/291 [00:06<00:00, 44.53it/s] Loading 0: 97%|█████████▋| 282/291 [00:06<00:00, 41.94it/s] Loading 0: 99%|█████████▊| 287/291 [00:06<00:00, 30.42it/s]
Job chaiml-llama-8b-nis-ft-37925-v1-mkmlizer completed after 137.21s with status: succeeded
Stopping job with name chaiml-llama-8b-nis-ft-37925-v1-mkmlizer
Pipeline stage MKMLizer completed in 137.92s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.19s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-llama-8b-nis-ft-37925-v1
Waiting for inference service chaiml-llama-8b-nis-ft-37925-v1 to be ready
Inference service chaiml-llama-8b-nis-ft-37925-v1 ready after 221.7105531692505s
Pipeline stage MKMLDeployer completed in 222.40s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.283895492553711s
Received healthy response to inference request in 2.3993265628814697s
Received healthy response to inference request in 1.8502566814422607s
Received healthy response to inference request in 2.466735601425171s
Received healthy response to inference request in 2.654204845428467s
5 requests
0 failed requests
5th percentile: 1.9600706577301026
10th percentile: 2.0698846340179444
20th percentile: 2.289512586593628
30th percentile: 2.41280837059021
40th percentile: 2.4397719860076905
50th percentile: 2.466735601425171
60th percentile: 2.541723299026489
70th percentile: 2.6167109966278077
80th percentile: 2.780142974853516
90th percentile: 3.0320192337036134
95th percentile: 3.157957363128662
99th percentile: 3.258707866668701
mean time: 2.5308838367462156
Pipeline stage StressChecker completed in 14.42s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.76s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.76s
Shutdown handler de-registered
chaiml-llama-8b-nis-ft-_37925_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Retrying (%r) after connection broken by '%r': %s
Retrying (%r) after connection broken by '%r': %s
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
%s, retrying in %s seconds...
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama-8b-nis-ft-37925-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 3.34s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-llama-8b-nis-ft-37925-v1-profiler
Waiting for inference service chaiml-llama-8b-nis-ft-37925-v1-profiler to be ready
Inference service chaiml-llama-8b-nis-ft-37925-v1-profiler ready after 91.24341225624084s
Pipeline stage MKMLProfilerDeployer completed in 91.82s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-754696089d11762b80a5dcb879302a68-deplojcmw6:/code/chaiverse_profiler_1751596884 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-754696089d11762b80a5dcb879302a68-deplojcmw6 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1751596884 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1751596884/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-754696089d11762b80a5dcb879302a68-deplojcmw6:/code/chaiverse_profiler_1751597311 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-754696089d11762b80a5dcb879302a68-deplojcmw6 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1751597311 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1751597311/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/chaiml-llama-8b-nis-754696089d11762b80a5dcb879302a68-deplojcmw6:/code/chaiverse_profiler_1751597756 --namespace tenant-chaiml-guanaco
kubectl exec -it chaiml-llama-8b-nis-754696089d11762b80a5dcb879302a68-deplojcmw6 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1751597756 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 1 --summary /code/chaiverse_profiler_1751597756/summary.json'
clean up pipeline due to error=ISVCScriptError('Command failed with error: Defaulted container "kserve-container" out of: kserve-container, queue-proxy\nUnable to use a TTY - input is not a terminal or the right kind of file\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:03<11:15, 3.39s/it]\n 1%| | 2/200 [00:06<11:21, 3.44s/it]\n 2%|▏ | 3/200 [00:06<06:19, 1.93s/it]\n 2%|▏ | 4/200 [00:10<08:21, 2.56s/it]\n 2%|▎ | 5/200 [00:10<05:36, 1.73s/it]\n 3%|▎ | 6/200 [00:11<03:58, 1.23s/it]\n 4%|▎ | 7/200 [00:11<02:56, 1.09it/s]\n 4%|▍ | 8/200 [00:11<02:17, 1.40it/s]\n 4%|▍ | 9/200 [00:15<05:03, 1.59s/it]\n 5%|▌ | 10/200 [00:15<03:43, 1.18s/it]\n 6%|▌ | 11/200 [00:18<05:55, 1.88s/it]\n 6%|▌ | 12/200 [00:22<07:27, 2.38s/it]\n 6%|▋ | 13/200 [00:25<08:26, 2.71s/it]\n 7%|▋ | 14/200 [00:26<06:07, 1.98s/it]\n 8%|▊ | 15/200 [00:26<04:22, 1.42s/it]\n 8%|▊ | 16/200 [00:26<03:17, 1.08s/it]\n 8%|▊ | 17/200 [00:26<02:33, 1.19it/s]\n 9%|▉ | 18/200 [00:30<04:58, 1.64s/it]\n 10%|▉ | 19/200 [00:30<03:41, 1.22s/it]\n 10%|█ | 20/200 [00:34<05:44, 1.92s/it]\n 10%|█ | 21/200 [00:37<07:05, 2.38s/it]\n 11%|█ | 22/200 [00:41<08:03, 2.72s/it]\n 12%|█▏ | 23/200 [00:44<08:38, 2.93s/it]\n 12%|█▏ | 24/200 [00:48<09:12, 3.14s/it]\n 12%|█▎ | 25/200 [00:48<06:30, 2.23s/it]\n 13%|█▎ | 26/200 [00:51<07:38, 2.64s/it]\n 14%|█▎ | 27/200 [00:55<08:23, 2.91s/it]\n 14%|█▍ | 28/200 [00:55<05:56, 2.07s/it]\n 14%|█▍ | 29/200 [00:55<04:21, 1.53s/it]\n 15%|█▌ | 30/200 [00:59<05:56, 2.10s/it]\n 16%|█▌ | 31/200 [00:59<04:21, 1.55s/it]\n 16%|█▌ | 32/200 [00:59<03:16, 1.17s/it]\n 16%|█▋ | 33/200 [01:03<05:12, 1.87s/it]\n 17%|█▋ | 34/200 [01:03<03:49, 1.38s/it]\n 18%|█▊ | 35/200 [01:06<05:31, 2.01s/it]\n 18%|█▊ | 36/200 [01:10<06:41, 2.45s/it]\n 18%|█▊ | 37/200 [01:10<04:51, 1.79s/it]\n 19%|█▉ | 38/200 [01:10<03:35, 1.33s/it]\n 20%|█▉ | 39/200 [01:14<05:22, 2.00s/it]\n 20%|██ | 40/200 [01:17<06:29, 2.43s/it]\n 20%|██ | 41/200 [01:21<07:16, 2.74s/it]\n 21%|██ | 42/200 [01:21<05:14, 1.99s/it]\n 22%|██▏ | 43/200 [01:25<06:25, 2.45s/it]\n 22%|██▏ | 44/200 [01:28<07:09, 2.75s/it]\n 22%|██▎ | 45/200 [01:28<05:10, 2.00s/it]\n 23%|██▎ | 46/200 [01:29<03:49, 1.49s/it]\n 24%|██▎ | 47/200 [01:32<05:17, 2.08s/it]\n 24%|██▍ | 48/200 [01:36<06:22, 2.52s/it]\n 24%|██▍ | 49/200 [01:39<07:05, 2.82s/it]\n 25%|██▌ | 50/200 [01:43<07:30, 3.00s/it]\n 26%|██▌ | 51/200 [01:43<05:24, 2.18s/it]\n 26%|██▌ | 52/200 [01:43<03:58, 1.61s/it]\n 26%|██▋ | 53/200 [01:43<02:57, 1.21s/it]\n 27%|██▋ | 54/200 [01:47<04:37, 1.90s/it]\n 28%|██▊ | 55/200 [01:47<03:25, 1.41s/it]\n 28%|██▊ | 56/200 [01:51<04:52, 2.03s/it]\n 28%|██▊ | 57/200 [01:54<05:52, 2.47s/it]\n 29%|██▉ | 58/200 [01:54<04:16, 1.81s/it]\n 30%|██▉ | 59/200 [01:55<03:03, 1.30s/it]\n 30%|███ | 60/200 [01:55<02:19, 1.00it/s]\n 30%|███ | 61/200 [01:55<01:48, 1.28it/s]\n 31%|███ | 62/200 [01:55<01:28, 1.57it/s]\n 32%|███▏ | 63/200 [01:59<03:26, 1.51s/it]\n 32%|███▏ | 64/200 [02:02<04:45, 2.10s/it]\n 32%|███▎ | 65/200 [02:06<05:38, 2.51s/it]\n 33%|███▎ | 66/200 [02:09<06:20, 2.84s/it]\n 34%|███▎ | 67/200 [02:13<06:48, 3.07s/it]\n 34%|███▍ | 68/200 [02:13<04:48, 2.19s/it]\n 34%|███▍ | 69/200 [02:17<05:41, 2.61s/it]\n 35%|███▌ | 70/200 [02:17<04:08, 1.91s/it]\n 36%|███▌ | 71/200 [02:21<05:14, 2.44s/it]\n 36%|███▌ | 72/200 [02:21<03:43, 1.74s/it]\n 36%|███▋ | 73/200 [02:21<02:45, 1.30s/it]\n 37%|███▋ | 74/200 [02:21<02:04, 1.01it/s]\n 38%|███▊ | 75/200 [02:22<01:35, 1.30it/s]\n 38%|███▊ | 76/200 [02:25<03:16, 1.59s/it]\n 38%|███▊ | 77/200 [02:29<04:29, 2.19s/it]\n 39%|███▉ | 78/200 [02:29<03:16, 1.61s/it]\n 40%|███▉ | 79/200 [02:32<04:22, 2.17s/it]\n 40%|████ | 80/200 [02:36<05:07, 2.56s/it]\n 40%|████ | 81/200 [02:39<05:39, 2.85s/it]\n 41%|████ | 82/200 [02:40<04:04, 2.08s/it]\n 42%|████▏ | 83/200 [02:43<04:51, 2.49s/it]\n 42%|████▏ | 84/200 [02:47<05:28, 2.83s/it]\n 42%|████▎ | 85/200 [02:47<03:52, 2.02s/it]\n 43%|████▎ | 86/200 [02:47<02:51, 1.50s/it]\n 44%|████▎ | 87/200 [02:48<02:07, 1.13s/it]\n 44%|████▍ | 88/200 [02:48<01:38, 1.14it/s]\n 44%|████▍ | 89/200 [02:51<03:05, 1.67s/it]\n 45%|████▌ | 90/200 [02:55<04:03, 2.21s/it]\n 46%|████▌ | 91/200 [02:55<02:58, 1.63s/it]\n 46%|████▌ | 92/200 [02:55<02:12, 1.22s/it]\n 46%|████▋ | 93/200 [02:56<01:40, 1.06it/s]\n 47%|████▋ | 94/200 [02:56<01:18, 1.35it/s]\n 48%|████▊ | 95/200 [02:59<02:45, 1.57s/it]\n 48%|████▊ | 96/200 [03:03<03:45, 2.16s/it]\n 48%|████▊ | 97/200 [03:06<04:23, 2.56s/it]\n 49%|████▉ | 98/200 [03:10<04:52, 2.87s/it]\n 50%|████▉ | 99/200 [03:14<05:10, 3.08s/it]\n 50%|█████ | 100/200 [03:14<03:38, 2.19s/it]\n 50%|█████ | 101/200 [03:17<04:22, 2.65s/it]\n 51%|█████ | 102/200 [03:21<04:45, 2.91s/it]\n 52%|█████▏ | 103/200 [03:21<03:21, 2.08s/it]\n 52%|█████▏ | 104/200 [03:25<04:03, 2.54s/it]\n 52%|█████▎ | 105/200 [03:28<04:27, 2.82s/it]\n 53%|█████▎ | 106/200 [03:28<03:09, 2.01s/it]\n 54%|█████▎ | 107/200 [03:29<02:18, 1.49s/it]\n 54%|█████▍ | 108/200 [03:29<01:44, 1.13s/it]\n 55%|█████▍ | 109/200 [03:32<02:48, 1.85s/it]\n 55%|█████▌ | 110/200 [03:36<03:31, 2.34s/it]\n 56%|█████▌ | 111/200 [03:36<02:32, 1.72s/it]\n 56%|█████▌ | 112/200 [03:40<03:18, 2.25s/it]\n 56%|█████▋ | 113/200 [03:43<03:49, 2.64s/it]\n 57%|█████▋ | 114/200 [03:47<04:09, 2.91s/it]\n 57%|█████▊ | 115/200 [03:50<04:25, 3.13s/it]\n 58%|█████▊ | 116/200 [03:51<03:07, 2.23s/it]\n 58%|█████▊ | 117/200 [03:54<03:38, 2.63s/it]\n 59%|█████▉ | 118/200 [03:54<02:36, 1.91s/it]\n 60%|█████▉ | 119/200 [03:55<01:55, 1.42s/it]\n 60%|██████ | 120/200 [03:58<02:45, 2.07s/it]\n 60%|██████ | 121/200 [04:02<03:18, 2.51s/it]\n 61%|██████ | 122/200 [04:05<03:40, 2.82s/it]\n 62%|██████▏ | 123/200 [04:09<03:54, 3.05s/it]\n 62%|██████▏ | 124/200 [04:09<02:44, 2.17s/it]\n 62%|██████▎ | 125/200 [04:12<03:11, 2.56s/it]\n 63%|██████▎ | 126/200 [04:16<03:34, 2.89s/it]\n 64%|██████▎ | 127/200 [04:20<03:43, 3.06s/it]\n 64%|██████▍ | 128/200 [04:23<03:49, 3.18s/it]\n 64%|██████▍ | 129/200 [04:23<02:41, 2.27s/it]\n 65%|██████▌ | 130/200 [04:27<03:05, 2.65s/it]\n 66%|██████▌ | 131/200 [04:27<02:13, 1.93s/it]\n 66%|██████▌ | 132/200 [04:31<02:46, 2.44s/it]\n 66%|██████▋ | 133/200 [04:31<01:57, 1.75s/it]\n 67%|██████▋ | 134/200 [04:34<02:32, 2.31s/it]\n 68%|██████▊ | 135/200 [04:34<01:47, 1.66s/it]\n 68%|██████▊ | 136/200 [04:38<02:25, 2.27s/it]\n 68%|██████▊ | 137/200 [04:42<02:47, 2.65s/it]\n 69%|██████▉ | 138/200 [04:42<01:57, 1.89s/it]\n 70%|██████▉ | 139/200 [04:45<02:25, 2.38s/it]\n 70%|███████ | 140/200 [04:49<02:43, 2.73s/it]\n 70%|███████ | 141/200 [04:49<01:57, 1.98s/it]\n 71%|███████ | 142/200 [04:53<02:23, 2.47s/it]\n 72%|███████▏ | 143/200 [04:56<02:39, 2.79s/it]\n 72%|███████▏ | 144/200 [05:00<02:48, 3.00s/it]\n 72%|███████▎ | 145/200 [05:03<02:52, 3.14s/it]\n 73%|███████▎ | 146/200 [05:07<02:56, 3.27s/it]\n 74%|███████▎ | 147/200 [05:10<02:56, 3.32s/it]\n 74%|███████▍ | 148/200 [05:10<02:02, 2.36s/it]\n 74%|███████▍ | 149/200 [05:14<02:17, 2.70s/it]\n 75%|███████▌ | 150/200 [05:14<01:37, 1.96s/it]\n 76%|███████▌ | 151/200 [05:14<01:11, 1.45s/it]\n 76%|███████▌ | 152/200 [05:18<01:39, 2.07s/it]\n 76%|███████▋ | 153/200 [05:21<01:58, 2.52s/it]\n 77%|███████▋ | 154/200 [05:25<02:09, 2.81s/it]\n 78%|███████▊ | 155/200 [05:25<01:30, 2.01s/it]\n 78%|███████▊ | 156/200 [05:29<01:47, 2.45s/it]\n 78%|███████▊ | 157/200 [05:29<01:17, 1.79s/it]\n 79%|███████▉ | 158/200 [05:29<00:56, 1.34s/it]\n 80%|███████▉ | 159/200 [05:33<01:21, 1.98s/it]\n 80%|████████ | 160/200 [05:36<01:38, 2.45s/it]\n 80%|████████ | 161/200 [05:36<01:08, 1.75s/it]\n 81%|████████ | 162/200 [05:36<00:49, 1.30s/it]\n 82%|████████▏ | 163/200 [05:37<00:36, 1.01it/s]\n 82%|████████▏ | 164/200 [05:40<01:03, 1.77s/it]\n 82%|████████▎ | 165/200 [05:41<00:46, 1.32s/it]\n 83%|████████▎ | 166/200 [05:44<01:05, 1.94s/it]\n 84%|████████▎ | 167/200 [05:47<01:18, 2.39s/it]\n 84%|████████▍ | 168/200 [05:51<01:27, 2.73s/it]\n 84%|████████▍ | 169/200 [05:51<01:01, 1.98s/it]\n 85%|████████▌ | 170/200 [05:51<00:44, 1.47s/it]\n 86%|████████▌ | 171/200 [05:52<00:32, 1.11s/it]\n 86%|████████▌ | 172/200 [05:55<00:51, 1.82s/it]\n 86%|████████▋ | 173/200 [05:59<01:02, 2.33s/it]\n 87%|████████▋ | 174/200 [05:59<00:44, 1.71s/it]\n 88%|████████▊ | 175/200 [06:02<00:55, 2.22s/it]\n 88%|████████▊ | 176/200 [06:03<00:39, 1.63s/it]\n 88%|████████▊ | 177/200 [06:06<00:50, 2.18s/it]\n 89%|████████▉ | 178/200 [06:06<00:35, 1.61s/it]\n 90%|████████▉ | 179/200 [06:10<00:45, 2.17s/it]\n 90%|█████████ | 180/200 [06:13<00:51, 2.57s/it]\n 90%|█████████ | 181/200 [06:17<00:53, 2.84s/it]\n 91%|█████████ | 182/200 [06:21<00:55, 3.08s/it]\n 92%|█████████▏| 183/200 [06:21<00:37, 2.19s/it]\n 92%|█████████▏| 184/200 [06:21<00:25, 1.62s/it]\n 92%|█████████▎| 185/200 [06:24<00:32, 2.18s/it]\n 93%|█████████▎| 186/200 [06:25<00:22, 1.61s/it]\n 94%|█████████▎| 187/200 [06:28<00:28, 2.17s/it]\n 94%|█████████▍| 188/200 [06:32<00:31, 2.59s/it]\n 94%|█████████▍| 189/200 [06:35<00:31, 2.88s/it]\n 95%|█████████▌| 190/200 [06:36<00:20, 2.09s/it]\n 96%|█████████▌| 191/200 [06:36<00:13, 1.54s/it]\n 96%|█████████▌| 192/200 [06:39<00:16, 2.11s/it]\n 96%|█████████▋| 193/200 [06:39<00:10, 1.56s/it]\n 97%|█████████▋| 194/200 [06:40<00:07, 1.17s/it]\n 98%|█████████▊| 195/200 [06:43<00:09, 1.87s/it]\n 98%|█████████▊| 196/200 [06:47<00:09, 2.35s/it]\n 98%|█████████▊| 197/200 [06:50<00:08, 2.68s/it]\n 99%|█████████▉| 198/200 [06:54<00:05, 2.92s/it]\n100%|█████████▉| 199/200 [06:54<00:02, 2.12s/it]\n100%|██████████| 200/200 [06:57<00:00, 2.56s/it]\n100%|██████████| 200/200 [06:57<00:00, 2.09s/it]\nTraceback (most recent call last):\n File "/code/chaiverse_profiler_1751597756/profiles.py", line 621, in <module>\n cli()\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__\n return self.main(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1078, in main\n rv = self.invoke(ctx)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke\n return _process_result(sub_ctx.command.invoke(sub_ctx))\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke\n return ctx.invoke(self.callback, **ctx.params)\n File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke\n return __callback(*args, **kwargs)\n File "/code/chaiverse_profiler_1751597756/profiles.py", line 112, in profile_batches\n profiles = run_batch_profile_with_auto_batch(target, batches, settings, auto_batch, output)\n File "/code/chaiverse_profiler_1751597756/profiles.py", line 163, in run_batch_profile_with_auto_batch\n profiles = run_batch_profile(target, batches, settings, output)\n File "/code/chaiverse_profiler_1751597756/profiles.py", line 277, in run_batch_profile\n analysis_data.write_jsonlines([batch_profile.to_dict()], path)\n File "/code/inference_analysis/data.py", line 64, in write_jsonlines\n f.write(json.dumps(row) + \'\\n\')\n File "/opt/conda/lib/python3.10/json/__init__.py", line 231, in dumps\n return _default_encoder.encode(obj)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 199, in encode\n chunks = self.iterencode(o, _one_shot=True)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 257, in iterencode\n return _iterencode(o, 0)\n File "/opt/conda/lib/python3.10/json/encoder.py", line 179, in default\n raise TypeError(f\'Object of type {o.__class__.__name__} \'\nTypeError: Object of type ResponseStats is not JSON serializable\ncommand terminated with exit code 1\n, output: waiting for startup of endpoint=\'localhost\' route=\'GPT-J-6B-lit-v2\' namespace=\'tenant-chaiml-guanaco\' reward=False url_format=\'{endpoint}.{namespace}.k.chaiverse.com\'\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (0,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : could not broadcast input array from shape (2,) into shape (1,)"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\nRequest failed with: (500, \'{"error":"Exception : negative dimensions are not allowed"}\')\n### Batch size: 1 ###\n\ntotal requests 200\nduration (s): 418.00452971458435\nerrors 87\nmean length: 1.695\n\nthroughput (request / second): 0.47846371458357406\nthroughput (character / second): 0.8109959962191581\naverage request duration (s) 2.089845834970474\n50%ile request duration (s) 3.453160524368286\n75%ile request duration (s) 3.5192577838897705\n90%ile request duration (s) 3.577481746673584\n95%ile request duration (s) 3.61374831199646\n\nmean input tokens 2.0\nmean output tokens 1.0\n\n\n')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service chaiml-llama-8b-nis-ft-37925-v1-profiler is running
Tearing down inference service chaiml-llama-8b-nis-ft-37925-v1-profiler
Service chaiml-llama-8b-nis-ft-37925-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 3.46s
Shutdown handler de-registered
chaiml-llama-8b-nis-ft-_37925_v1 status is now inactive due to auto deactivation removed underperforming models
chaiml-llama-8b-nis-ft-_37925_v1 status is now torndown due to DeploymentManager action