developer_uid: chai_backend_admin
submission_id: chaiml-kimid-v4-lr2e6g32_v1
model_name: training123
model_group: ChaiML/kimid-v4_lr2e6g32
status: inactive
timestamp: 2025-12-06T16:26:29+00:00
num_battles: 7060
num_wins: 3681
celo_rating: 1307.83
family_friendly_score: 0.518
family_friendly_standard_error: 0.0070664842743757665
submission_type: basic
model_repo: ChaiML/kimid-v4_lr2e6g32
model_architecture: MistralForCausalLM
model_num_parameters: 24096691200.0
best_of: 8
max_input_tokens: 2048
max_output_tokens: 72
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.3485740849674405, 'latency_mean': 2.8687525296211245, 'latency_p50': 2.863974094390869, 'latency_p90': 3.1145928621292116}, {'batch_size': 2, 'throughput': 0.5351864949686214, 'latency_mean': 3.7315886712074278, 'latency_p50': 3.7208709716796875, 'latency_p90': 4.088494992256164}, {'batch_size': 3, 'throughput': 0.666218977936719, 'latency_mean': 4.496902037858963, 'latency_p50': 4.500791668891907, 'latency_p90': 4.857700061798096}, {'batch_size': 4, 'throughput': 0.7553472036111696, 'latency_mean': 5.269969146251679, 'latency_p50': 5.26333212852478, 'latency_p90': 6.023973417282105}, {'batch_size': 5, 'throughput': 0.8164267466379355, 'latency_mean': 6.085207267999649, 'latency_p50': 6.109938383102417, 'latency_p90': 6.944419550895691}]
gpu_counts: {'NVIDIA L40S': 1}
display_name: training123
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: ChaiML/kimid-v4_lr2e6g32
model_size: 24B
ranking_group: single
throughput_3p7s: 0.53
us_pacific_date: 2025-12-06
win_ratio: 0.5213881019830028
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['You:', 'User:', '</s>'], 'max_input_tokens': 2048, 'best_of': 8, 'max_output_tokens': 72}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '####\n{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name chaiml-kimid-v4-lr2e6g32-v1-mkmlizer
Waiting for job on chaiml-kimid-v4-lr2e6g32-v1-mkmlizer to finish
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: bash: cannot set terminal process group (-1): Inappropriate ioctl for device
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: bash: no job control in this shell
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: /root/miniconda3/envs/nvidia/lib/python3.11/site-packages/mk1/__init__.py:1: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: __import__('pkg_resources').declare_namespace(__name__)
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Version: 0.30.6+torch280 ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ belonging to: ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Downloaded to shared memory in 74.695s
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Checking if ChaiML/kimid-v4_lr2e6g32 already exists in ChaiML
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp_nybnox8, device:0
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Loading 0: 0%| | 0.00/363 [00:00<?, ?it/s] Loading 0: 9%|▉ | 32.0/363 [00:01<00:10, 30.4it/s] Loading 0: 9%|▉ | 32.0/363 [00:01<00:10, 30.4it/s] Loading 0: 16%|█▌ | 58.0/363 [00:02<00:11, 27.7it/s] Loading 0: 16%|█▌ | 58.0/363 [00:02<00:11, 27.7it/s] Loading 0: 23%|██▎ | 84.0/363 [00:03<00:10, 26.0it/s] Loading 0: 23%|██▎ | 84.0/363 [00:03<00:10, 26.0it/s] Loading 0: 28%|██▊ | 101/363 [00:04<00:12, 21.2it/s] Loading 0: 28%|██▊ | 101/363 [00:04<00:12, 21.2it/s] Loading 0: 36%|███▌ | 131/363 [00:05<00:09, 23.4it/s] Loading 0: 36%|███▌ | 131/363 [00:05<00:09, 23.4it/s] Loading 0: 44%|████▎ | 158/363 [00:06<00:08, 24.4it/s] Loading 0: 44%|████▎ | 158/363 [00:06<00:08, 24.4it/s] Loading 0: 52%|█████▏ | 189/363 [00:07<00:07, 24.1it/s] Loading 0: 52%|█████▏ | 189/363 [00:07<00:07, 24.1it/s] Loading 0: 52%|█████▏ | 189/363 [00:21<00:07, 24.1it/s] Loading 0: 55%|█████▌ | 201/363 [00:21<00:35, 4.53it/s] Loading 0: 55%|█████▌ | 201/363 [00:21<00:35, 4.53it/s] Loading 0: 62%|██████▏ | 224/363 [00:22<00:23, 6.02it/s] Loading 0: 62%|██████▏ | 224/363 [00:22<00:23, 6.02it/s] Loading 0: 70%|██████▉ | 253/363 [00:23<00:13, 8.44it/s] Loading 0: 70%|██████▉ | 253/363 [00:23<00:13, 8.44it/s] Loading 0: 76%|███████▌ | 275/363 [00:24<00:08, 10.2it/s] Loading 0: 76%|███████▌ | 275/363 [00:24<00:08, 10.2it/s] Loading 0: 84%|████████▎ | 304/363 [00:25<00:04, 13.1it/s] Loading 0: 84%|████████▎ | 304/363 [00:25<00:04, 13.1it/s] Loading 0: 91%|█████████▏| 332/363 [00:26<00:01, 15.8it/s] Loading 0: 91%|█████████▏| 332/363 [00:26<00:01, 15.8it/s] Loading 0: 97%|█████████▋| 353/363 [00:27<00:00, 16.7it/s] Loading 0: 97%|█████████▋| 353/363 [00:27<00:00, 16.7it/s] Loading 0: 100%|██████████| 363/363 [00:27<00:00, 17.6it/s] Loading 0: 100%|██████████| 363/363 [00:27<00:00, 17.6it/s] Loading 0: 100%|██████████| 363/363 [00:27<00:00, 13.1it/s]
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: The tokenizer you are loading from '/tmp/tmp_nybnox8' with an incorrect regex pattern: https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503/discussions/84#69121093e8b480e709447d5e. This will lead to incorrect tokenization. You should set the `fix_mistral_regex=True` flag when loading this tokenizer to fix this issue.
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: quantized model in 44.793s
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Processed model ChaiML/kimid-v4_lr2e6g32 in 119.488s
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/config.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/special_tokens_map.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/tokenizer_config.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: DEBUG retryable error: RequestError: send request failed
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: caused by: Put "https://object.ord1.coreweave.com/guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/flywheel_model.0.safetensors?partNumber=45&uploadId=2~DjXKzHTqv5CBvq7HZzpGVSd3JcOuUVV": write tcp 10.0.5.2:39670->216.153.53.63:443: write: connection reset by peer
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ERROR "cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/flywheel_model.0.safetensors": MultipartUpload: upload multipart failed upload id: 2~DjXKzHTqv5CBvq7HZzpGVSd3JcOuUVV caused by: SignatureDoesNotMatch: status code: 403, request id: tx000004c3352abca24fcd4-0069344a07-12253ce6e2-default, host id:
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/flywheel_model.1.safetensors
Job chaiml-kimid-v4-lr2e6g32-v1-mkmlizer completed after 164.89s with status: failed
Stopping job with name chaiml-kimid-v4-lr2e6g32-v1-mkmlizer
%s, retrying in %s seconds...
Starting job with name chaiml-kimid-v4-lr2e6g32-v1-mkmlizer
Waiting for job on chaiml-kimid-v4-lr2e6g32-v1-mkmlizer to finish
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: bash: cannot set terminal process group (-1): Inappropriate ioctl for device
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: bash: no job control in this shell
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: /root/miniconda3/envs/nvidia/lib/python3.11/site-packages/mk1/__init__.py:1: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: __import__('pkg_resources').declare_namespace(__name__)
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Version: 0.30.6+torch280 ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ https://mk1.ai ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ belonging to: ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Chai Research Corp. ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ║ ║
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Downloaded to shared memory in 34.930s
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Checking if ChaiML/kimid-v4_lr2e6g32 already exists in ChaiML
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpdyuy48f3, device:0
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Loading 0: 0%| | 0.00/363 [00:00<?, ?it/s] Loading 0: 9%|▉ | 32.0/363 [00:01<00:10, 31.5it/s] Loading 0: 9%|▉ | 32.0/363 [00:01<00:10, 31.5it/s] Loading 0: 16%|█▌ | 57.0/363 [00:02<00:11, 27.3it/s] Loading 0: 16%|█▌ | 57.0/363 [00:02<00:11, 27.3it/s] Loading 0: 22%|██▏ | 80.0/363 [00:03<00:11, 25.0it/s] Loading 0: 22%|██▏ | 80.0/363 [00:03<00:11, 25.0it/s] Loading 0: 29%|██▉ | 107/363 [00:04<00:10, 25.6it/s] Loading 0: 29%|██▉ | 107/363 [00:04<00:10, 25.6it/s] Loading 0: 38%|███▊ | 139/363 [00:05<00:08, 27.5it/s] Loading 0: 38%|███▊ | 139/363 [00:05<00:08, 27.5it/s] Loading 0: 45%|████▌ | 165/363 [00:06<00:07, 26.8it/s] Loading 0: 45%|████▌ | 165/363 [00:06<00:07, 26.8it/s] Loading 0: 52%|█████▏ | 189/363 [00:07<00:06, 25.9it/s] Loading 0: 52%|█████▏ | 189/363 [00:07<00:06, 25.9it/s] Loading 0: 52%|█████▏ | 189/363 [00:20<00:06, 25.9it/s] Loading 0: 55%|█████▌ | 201/363 [00:20<00:36, 4.48it/s] Loading 0: 55%|█████▌ | 201/363 [00:20<00:36, 4.48it/s] Loading 0: 62%|██████▏ | 224/363 [00:21<00:23, 6.00it/s] Loading 0: 62%|██████▏ | 224/363 [00:21<00:23, 6.00it/s] Loading 0: 70%|███████ | 255/363 [00:22<00:12, 8.69it/s] Loading 0: 70%|███████ | 255/363 [00:22<00:12, 8.69it/s] Loading 0: 77%|███████▋ | 280/363 [00:23<00:07, 10.8it/s] Loading 0: 77%|███████▋ | 280/363 [00:23<00:07, 10.8it/s] Loading 0: 84%|████████▍ | 306/363 [00:24<00:04, 13.1it/s] Loading 0: 84%|████████▍ | 306/363 [00:24<00:04, 13.1it/s] Loading 0: 93%|█████████▎| 336/363 [00:25<00:01, 16.0it/s] Loading 0: 93%|█████████▎| 336/363 [00:25<00:01, 16.0it/s] Loading 0: 100%|█████████▉| 362/363 [00:26<00:00, 17.8it/s] Loading 0: 100%|█████████▉| 362/363 [00:26<00:00, 17.8it/s] Loading 0: 100%|██████████| 363/363 [00:26<00:00, 17.8it/s] Loading 0: 100%|██████████| 363/363 [00:26<00:00, 13.6it/s]
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: The tokenizer you are loading from '/tmp/tmpdyuy48f3' with an incorrect regex pattern: https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503/discussions/84#69121093e8b480e709447d5e. This will lead to incorrect tokenization. You should set the `fix_mistral_regex=True` flag when loading this tokenizer to fix this issue.
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: quantized model in 42.725s
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Processed model ChaiML/kimid-v4_lr2e6g32 in 77.655s
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: creating bucket guanaco-mkml-models
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/config.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/special_tokens_map.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/tokenizer_config.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/tokenizer.json
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/flywheel_model.1.safetensors
chaiml-kimid-v4-lr2e6g32-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-kimid-v4-lr2e6g32-v1/nvidia/flywheel_model.0.safetensors
Job chaiml-kimid-v4-lr2e6g32-v1-mkmlizer completed after 146.5s with status: succeeded
Stopping job with name chaiml-kimid-v4-lr2e6g32-v1-mkmlizer
Pipeline stage MKMLizer completed in 312.30s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service chaiml-kimid-v4-lr2e6g32-v1
Waiting for inference service chaiml-kimid-v4-lr2e6g32-v1 to be ready
Inference service chaiml-kimid-v4-lr2e6g32-v1 ready after 200.77667093276978s
Pipeline stage MKMLDeployer completed in 201.36s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.3005902767181396s
Received healthy response to inference request in 2.785672187805176s
Received healthy response to inference request in 2.647437572479248s
Received healthy response to inference request in 2.2259509563446045s
Received healthy response to inference request in 2.1497890949249268s
5 requests
0 failed requests
5th percentile: 2.165021467208862
10th percentile: 2.180253839492798
20th percentile: 2.210718584060669
30th percentile: 2.310248279571533
40th percentile: 2.478842926025391
50th percentile: 2.647437572479248
60th percentile: 2.702731418609619
70th percentile: 2.7580252647399903
80th percentile: 2.8886558055877685
90th percentile: 3.0946230411529543
95th percentile: 3.197606658935547
99th percentile: 3.279993553161621
mean time: 2.621888017654419
Pipeline stage StressChecker completed in 15.07s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.70s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.66s
Shutdown handler de-registered
chaiml-kimid-v4-lr2e6g32_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.09s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service chaiml-kimid-v4-lr2e6g32-v1-profiler
Waiting for inference service chaiml-kimid-v4-lr2e6g32-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Generating Leaderboard row for %s
Generated Leaderboard row for %s
Pipeline stage OfflineFamilyFriendlyScorer completed in 2840.87s
Shutdown handler de-registered
chaiml-kimid-v4-lr2e6g32_v1 status is now inactive due to auto deactivation removed underperforming models