developer_uid: cgato
submission_id: cgato-nemo-12b-humanize_7413_v16
model_name: cgato-nemo-12b-humanize_7413_v16
model_group: cgato/Nemo-12b-Humanize-
status: inactive
timestamp: 2024-12-18T03:03:03+00:00
num_battles: 16434
num_wins: 8228
celo_rating: 1263.04
family_friendly_score: 0.5738
family_friendly_standard_error: 0.006993619377689924
submission_type: basic
model_repo: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
model_architecture: MistralForCausalLM
model_num_parameters: 12772111360.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6061035358300633, 'latency_mean': 1.6497980499267577, 'latency_p50': 1.65646231174469, 'latency_p90': 1.8192436218261718}, {'batch_size': 3, 'throughput': 1.1402798017175941, 'latency_mean': 2.6244582867622377, 'latency_p50': 2.5957621335983276, 'latency_p90': 2.9377126455307008}, {'batch_size': 5, 'throughput': 1.3728778512825552, 'latency_mean': 3.627107936143875, 'latency_p50': 3.6341733932495117, 'latency_p90': 4.035336494445801}, {'batch_size': 6, 'throughput': 1.4394484340045972, 'latency_mean': 4.153564368486404, 'latency_p50': 4.188247084617615, 'latency_p90': 4.699079537391662}, {'batch_size': 8, 'throughput': 1.516859329461297, 'latency_mean': 5.246479852199554, 'latency_p50': 5.277143359184265, 'latency_p90': 5.872618556022644}, {'batch_size': 10, 'throughput': 1.5347091900467, 'latency_mean': 6.464514878988266, 'latency_p50': 6.4818631410598755, 'latency_p90': 7.3079835891723635}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: cgato-nemo-12b-humanize_7413_v16
is_internal_developer: False
language_model: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
model_size: 13B
ranking_group: single
throughput_3p7s: 1.39
us_pacific_date: 2024-12-17
win_ratio: 0.500669344042838
generation_params: {'temperature': 0.7, 'top_p': 0.9, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name cgato-nemo-12b-humanize-7413-v16-mkmlizer
Waiting for job on cgato-nemo-12b-humanize-7413-v16-mkmlizer to finish
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ _____ __ __ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ /___/ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ Version: 0.11.12 ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ https://mk1.ai ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ The license key for the current software has been verified as ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ belonging to: ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ Chai Research Corp. ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ║ ║
cgato-nemo-12b-humanize-7413-v16-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cgato-nemo-12b-humanize-7413-v16-mkmlizer: Downloaded to shared memory in 35.346s
cgato-nemo-12b-humanize-7413-v16-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpdzt9qshv, device:0
cgato-nemo-12b-humanize-7413-v16-mkmlizer: Saving flywheel model at /dev/shm/model_cache
cgato-nemo-12b-humanize-7413-v16-mkmlizer: quantized model in 37.036s
cgato-nemo-12b-humanize-7413-v16-mkmlizer: Processed model cgato/Nemo-12b-Humanize-KTO-Experimental-Latest in 72.382s
cgato-nemo-12b-humanize-7413-v16-mkmlizer: creating bucket guanaco-mkml-models
cgato-nemo-12b-humanize-7413-v16-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
cgato-nemo-12b-humanize-7413-v16-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/cgato-nemo-12b-humanize-7413-v16
cgato-nemo-12b-humanize-7413-v16-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cgato-nemo-12b-humanize-7413-v16/config.json
cgato-nemo-12b-humanize-7413-v16-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cgato-nemo-12b-humanize-7413-v16/special_tokens_map.json
cgato-nemo-12b-humanize-7413-v16-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cgato-nemo-12b-humanize-7413-v16/tokenizer.json
cgato-nemo-12b-humanize-7413-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/cgato-nemo-12b-humanize-7413-v16/flywheel_model.0.safetensors
cgato-nemo-12b-humanize-7413-v16-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.22it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 50.37it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 46.09it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 42.50it/s] Loading 0: 8%|▊ | 30/363 [00:00<00:07, 46.17it/s] Loading 0: 10%|▉ | 35/363 [00:00<00:07, 43.32it/s] Loading 0: 11%|█ | 40/363 [00:00<00:07, 42.08it/s] Loading 0: 12%|█▏ | 45/363 [00:01<00:07, 42.54it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:09, 33.77it/s] Loading 0: 16%|█▌ | 58/363 [00:01<00:06, 43.95it/s] Loading 0: 17%|█▋ | 63/363 [00:01<00:09, 30.35it/s] Loading 0: 19%|█▊ | 68/363 [00:01<00:08, 33.81it/s] Loading 0: 20%|██ | 73/363 [00:01<00:09, 31.05it/s] Loading 0: 22%|██▏ | 80/363 [00:02<00:07, 38.66it/s] Loading 0: 23%|██▎ | 85/363 [00:02<00:07, 38.61it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 40.06it/s] Loading 0: 26%|██▌ | 95/363 [00:02<00:06, 41.41it/s] Loading 0: 28%|██▊ | 100/363 [00:02<00:07, 35.63it/s] Loading 0: 29%|██▉ | 107/363 [00:02<00:05, 43.26it/s] Loading 0: 31%|███ | 112/363 [00:02<00:05, 43.85it/s] Loading 0: 32%|███▏ | 117/363 [00:02<00:05, 41.33it/s] Loading 0: 34%|███▎ | 122/363 [00:03<00:05, 42.61it/s] Loading 0: 35%|███▍ | 127/363 [00:03<00:06, 34.76it/s] Loading 0: 37%|███▋ | 134/363 [00:03<00:05, 41.81it/s] Loading 0: 38%|███▊ | 139/363 [00:03<00:05, 39.96it/s] Loading 0: 40%|███▉ | 144/363 [00:03<00:08, 25.69it/s] Loading 0: 41%|████ | 149/363 [00:04<00:07, 28.08it/s] Loading 0: 43%|████▎ | 157/363 [00:04<00:05, 36.16it/s] Loading 0: 45%|████▍ | 162/363 [00:04<00:05, 38.89it/s] Loading 0: 46%|████▌ | 167/363 [00:04<00:05, 35.39it/s] Loading 0: 48%|████▊ | 175/363 [00:04<00:04, 43.27it/s] Loading 0: 50%|████▉ | 181/363 [00:04<00:04, 41.43it/s] Loading 0: 51%|█████ | 186/363 [00:04<00:04, 40.45it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 45.26it/s] Loading 0: 55%|█████▍ | 199/363 [00:05<00:03, 44.24it/s] Loading 0: 56%|█████▌ | 204/363 [00:05<00:03, 43.33it/s] Loading 0: 58%|█████▊ | 211/363 [00:05<00:03, 48.07it/s] Loading 0: 60%|█████▉ | 217/363 [00:05<00:03, 45.51it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 34.80it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:03, 34.20it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 32.45it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 37.43it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 37.65it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.25it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 41.72it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:02, 35.69it/s] Loading 0: 73%|███████▎ | 265/363 [00:06<00:02, 44.15it/s] Loading 0: 75%|███████▍ | 271/363 [00:06<00:02, 42.66it/s] Loading 0: 76%|███████▌ | 276/363 [00:07<00:02, 41.35it/s] Loading 0: 78%|███████▊ | 282/363 [00:07<00:01, 45.05it/s] Loading 0: 79%|███████▉ | 287/363 [00:07<00:01, 44.09it/s] Loading 0: 80%|████████ | 292/363 [00:07<00:01, 45.20it/s] Loading 0: 82%|████████▏ | 298/363 [00:07<00:01, 43.40it/s] Loading 0: 84%|████████▎ | 304/363 [00:14<00:22, 2.63it/s] Loading 0: 85%|████████▍ | 308/363 [00:14<00:16, 3.34it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:12, 4.23it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:06, 6.93it/s] Loading 0: 90%|████████▉ | 326/363 [00:15<00:03, 9.34it/s] Loading 0: 91%|█████████ | 331/363 [00:15<00:02, 11.80it/s] Loading 0: 93%|█████████▎| 338/363 [00:15<00:01, 16.47it/s] Loading 0: 94%|█████████▍| 343/363 [00:15<00:01, 19.84it/s] Loading 0: 96%|█████████▌| 348/363 [00:15<00:00, 21.72it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 29.38it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 32.15it/s]
Job cgato-nemo-12b-humanize-7413-v16-mkmlizer completed after 94.65s with status: succeeded
Stopping job with name cgato-nemo-12b-humanize-7413-v16-mkmlizer
Pipeline stage MKMLizer completed in 95.18s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service cgato-nemo-12b-humanize-7413-v16
Waiting for inference service cgato-nemo-12b-humanize-7413-v16 to be ready
Inference service cgato-nemo-12b-humanize-7413-v16 ready after 230.81905245780945s
Pipeline stage MKMLDeployer completed in 231.37s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.313570261001587s
Received healthy response to inference request in 2.0716798305511475s
Received healthy response to inference request in 1.1446130275726318s
Received healthy response to inference request in 1.7134082317352295s
Received healthy response to inference request in 1.9129116535186768s
5 requests
0 failed requests
5th percentile: 1.2583720684051514
10th percentile: 1.372131109237671
20th percentile: 1.59964919090271
30th percentile: 1.7533089160919189
40th percentile: 1.8331102848052978
50th percentile: 1.9129116535186768
60th percentile: 1.976418924331665
70th percentile: 2.0399261951446532
80th percentile: 2.1200579166412354
90th percentile: 2.216814088821411
95th percentile: 2.265192174911499
99th percentile: 2.3038946437835692
mean time: 1.8312366008758545
Pipeline stage StressChecker completed in 10.42s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.49s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.83s
Shutdown handler de-registered
cgato-nemo-12b-humanize_7413_v16 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3368.27s
Shutdown handler de-registered
cgato-nemo-12b-humanize_7413_v16 status is now inactive due to auto deactivation removed underperforming models