developer_uid: bogoconic1
submission_id: bogoconic1-nemo-280k-av_59118_v1
model_name: bogoconic1-nemo-280k-av_59118_v1
model_group: bogoconic1/nemo-280k-avg
status: torndown
timestamp: 2025-05-02T11:11:49+00:00
num_battles: 7643
num_wins: 3650
celo_rating: 1272.66
family_friendly_score: 0.5904
family_friendly_standard_error: 0.006954535786089536
submission_type: basic
model_repo: bogoconic1/nemo-280k-avg-chai-step600
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6056149104833344, 'latency_mean': 1.651151008605957, 'latency_p50': 1.6611777544021606, 'latency_p90': 1.8082905530929565}, {'batch_size': 3, 'throughput': 1.1135485159162657, 'latency_mean': 2.6883910703659057, 'latency_p50': 2.6948448419570923, 'latency_p90': 2.9349057912826537}, {'batch_size': 5, 'throughput': 1.3514047668872013, 'latency_mean': 3.6771524381637573, 'latency_p50': 3.680490732192993, 'latency_p90': 4.135560798645019}, {'batch_size': 6, 'throughput': 1.4130350579296402, 'latency_mean': 4.226094201803208, 'latency_p50': 4.200039386749268, 'latency_p90': 4.776275181770324}, {'batch_size': 8, 'throughput': 1.4871383064181756, 'latency_mean': 5.3492660248279575, 'latency_p50': 5.392518043518066, 'latency_p90': 5.969122266769409}, {'batch_size': 10, 'throughput': 1.5225511746302494, 'latency_mean': 6.521168143749237, 'latency_p50': 6.571364521980286, 'latency_p90': 7.335248064994812}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: bogoconic1-nemo-280k-av_59118_v1
is_internal_developer: False
language_model: bogoconic1/nemo-280k-avg-chai-step600
model_size: 13B
ranking_group: single
throughput_3p7s: 1.36
us_pacific_date: 2025-05-02
win_ratio: 0.4775611670809891
generation_params: {'temperature': 0.9, 'top_p': 0.9, 'min_p': 0.0, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name bogoconic1-nemo-280k-av-59118-v1-mkmlizer
Waiting for job on bogoconic1-nemo-280k-av-59118-v1-mkmlizer to finish
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ _____ __ __ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ /___/ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ Version: 0.12.8 ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ https://mk1.ai ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ The license key for the current software has been verified as ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ belonging to: ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ Chai Research Corp. ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ║ ║
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: Downloaded to shared memory in 42.363s
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpo67majpd, device:0
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: quantized model in 36.065s
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: Processed model bogoconic1/nemo-280k-avg-chai-step600 in 78.429s
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: creating bucket guanaco-mkml-models
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/bogoconic1-nemo-280k-av-59118-v1
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/bogoconic1-nemo-280k-av-59118-v1/config.json
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/bogoconic1-nemo-280k-av-59118-v1/special_tokens_map.json
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/bogoconic1-nemo-280k-av-59118-v1/tokenizer_config.json
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/bogoconic1-nemo-280k-av-59118-v1/tokenizer.json
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/bogoconic1-nemo-280k-av-59118-v1/flywheel_model.0.safetensors
bogoconic1-nemo-280k-av-59118-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.60it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.52it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 48.05it/s] Loading 0: 7%|▋ | 25/363 [00:00<00:06, 49.01it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 51.73it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 48.98it/s] Loading 0: 12%|█▏ | 43/363 [00:00<00:06, 47.83it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 49.41it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 47.16it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 35.08it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:08, 33.64it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.78it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 41.51it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 41.86it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:05, 46.91it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:05, 45.97it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:05, 44.96it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:05, 50.78it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:05, 45.95it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:05, 44.73it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:04, 47.84it/s] Loading 0: 36%|███▋ | 132/363 [00:02<00:05, 45.49it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:05, 44.15it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 32.75it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 32.97it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 32.48it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 38.45it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 39.64it/s] Loading 0: 46%|████▌ | 166/363 [00:03<00:04, 41.50it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 39.67it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 38.77it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:04, 44.01it/s] Loading 0: 52%|█████▏ | 190/363 [00:04<00:04, 42.71it/s] Loading 0: 54%|█████▎ | 195/363 [00:04<00:04, 41.78it/s] Loading 0: 55%|█████▌ | 201/363 [00:04<00:03, 45.00it/s] Loading 0: 57%|█████▋ | 206/363 [00:04<00:03, 45.55it/s] Loading 0: 58%|█████▊ | 211/363 [00:04<00:03, 45.97it/s] Loading 0: 60%|█████▉ | 217/363 [00:05<00:03, 44.63it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 34.53it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:03, 34.99it/s] Loading 0: 64%|██████▎ | 231/363 [00:05<00:03, 34.24it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 40.23it/s] Loading 0: 67%|██████▋ | 242/363 [00:05<00:03, 40.24it/s] Loading 0: 68%|██████▊ | 247/363 [00:05<00:02, 41.41it/s] Loading 0: 69%|██████▉ | 252/363 [00:05<00:02, 43.57it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:02, 35.62it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 41.71it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 39.67it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 38.53it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:02, 40.27it/s] Loading 0: 78%|███████▊ | 284/363 [00:06<00:02, 34.21it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 40.37it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 40.91it/s] Loading 0: 83%|████████▎ | 302/363 [00:07<00:01, 45.38it/s] Loading 0: 85%|████████▍ | 307/363 [00:14<00:22, 2.53it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:14, 3.44it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.50it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:05, 7.40it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.42it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.36it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 16.58it/s] Loading 0: 96%|█████████▌| 349/363 [00:15<00:00, 19.71it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 25.83it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 29.59it/s]
Job bogoconic1-nemo-280k-av-59118-v1-mkmlizer completed after 104.81s with status: succeeded
Stopping job with name bogoconic1-nemo-280k-av-59118-v1-mkmlizer
Pipeline stage MKMLizer completed in 105.29s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service bogoconic1-nemo-280k-av-59118-v1
Waiting for inference service bogoconic1-nemo-280k-av-59118-v1 to be ready
Failed to get response for submission blend_ruhas_2025-04-28: HTTPConnectionPool(host='blend-tajit-2025-04-28-predictor.tenant-chaiml-guanaco.k2.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission chaiml-cogito14b-dpoexp_10161_v3: HTTPConnectionPool(host='chaiml-cogito14b-dpoexp-10161-v3-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Unable to record family friendly update due to error: Invalid JSON input: JSON must contain 'User Safety' and 'Response Safety' fields
Inference service bogoconic1-nemo-280k-av-59118-v1 ready after 161.11012148857117s
Pipeline stage MKMLDeployer completed in 161.55s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 7.725988864898682s
Received healthy response to inference request in 1.5079023838043213s
Received healthy response to inference request in 7.137356519699097s
Received healthy response to inference request in 1.7871129512786865s
Received healthy response to inference request in 1.4748139381408691s
5 requests
0 failed requests
5th percentile: 1.4814316272735595
10th percentile: 1.48804931640625
20th percentile: 1.501284694671631
30th percentile: 1.5637444972991943
40th percentile: 1.6754287242889405
50th percentile: 1.7871129512786865
60th percentile: 3.92721037864685
70th percentile: 6.067307806015013
80th percentile: 7.255082988739014
90th percentile: 7.490535926818848
95th percentile: 7.608262395858764
99th percentile: 7.702443571090698
mean time: 3.926634931564331
%s, retrying in %s seconds...
Received healthy response to inference request in 2.1691317558288574s
Received healthy response to inference request in 1.5088560581207275s
Received healthy response to inference request in 2.188617706298828s
Received healthy response to inference request in 1.6663823127746582s
Received healthy response to inference request in 1.716982364654541s
5 requests
0 failed requests
5th percentile: 1.5403613090515136
10th percentile: 1.5718665599822998
20th percentile: 1.6348770618438722
30th percentile: 1.6765023231506349
40th percentile: 1.696742343902588
50th percentile: 1.716982364654541
60th percentile: 1.8978421211242675
70th percentile: 2.078701877593994
80th percentile: 2.1730289459228516
90th percentile: 2.18082332611084
95th percentile: 2.184720516204834
99th percentile: 2.1878382682800295
mean time: 1.8499940395355225
Pipeline stage StressChecker completed in 31.52s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.83s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.74s
Shutdown handler de-registered
bogoconic1-nemo-280k-av_59118_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service bogoconic1-nemo-280k-av-59118-v1-profiler
Waiting for inference service bogoconic1-nemo-280k-av-59118-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 4972.53s
Shutdown handler de-registered
bogoconic1-nemo-280k-av_59118_v1 status is now inactive due to auto deactivation removed underperforming models
bogoconic1-nemo-280k-av_59118_v1 status is now torndown due to DeploymentManager action