Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-9730-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-9730-v1-mkmlizer to finish
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9730-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-9730-v1-mkmlizer: Downloaded to shared memory in 30.993s
alexdaoud-trainer-bagir-9730-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmp_zzsuid8, device:0
alexdaoud-trainer-bagir-9730-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-9730-v1-mkmlizer: quantized model in 85.810s
alexdaoud-trainer-bagir-9730-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-34 in 116.803s
alexdaoud-trainer-bagir-9730-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-9730-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-9730-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9730-v1
alexdaoud-trainer-bagir-9730-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9730-v1/config.json
alexdaoud-trainer-bagir-9730-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9730-v1/special_tokens_map.json
alexdaoud-trainer-bagir-9730-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9730-v1/tokenizer_config.json
alexdaoud-trainer-bagir-9730-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9730-v1/tokenizer.json
alexdaoud-trainer-bagir-9730-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:00<00:56, 5.07it/s]
Loading 0: 1%|▏ | 4/291 [00:01<01:32, 3.10it/s]
Loading 0: 2%|▏ | 5/291 [00:01<02:03, 2.31it/s]
Loading 0: 3%|▎ | 8/291 [00:02<01:03, 4.43it/s]
Loading 0: 3%|▎ | 9/291 [00:02<01:02, 4.50it/s]
Loading 0: 3%|▎ | 10/291 [00:02<00:54, 5.13it/s]
Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.28it/s]
Loading 0: 4%|▍ | 13/291 [00:03<01:26, 3.21it/s]
Loading 0: 5%|▍ | 14/291 [00:04<01:50, 2.52it/s]
Loading 0: 6%|▌ | 17/291 [00:04<01:03, 4.34it/s]
Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.56it/s]
Loading 0: 7%|▋ | 19/291 [00:04<00:54, 5.03it/s]
Loading 0: 7%|▋ | 21/291 [00:05<01:03, 4.28it/s]
Loading 0: 8%|▊ | 22/291 [00:05<01:22, 3.25it/s]
Loading 0: 8%|▊ | 23/291 [00:06<01:44, 2.57it/s]
Loading 0: 9%|▉ | 26/291 [00:06<01:00, 4.38it/s]
Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.63it/s]
Loading 0: 10%|▉ | 28/291 [00:07<00:50, 5.23it/s]
Loading 0: 10%|█ | 30/291 [00:07<00:59, 4.36it/s]
Loading 0: 11%|█ | 31/291 [00:08<01:18, 3.30it/s]
Loading 0: 11%|█ | 32/291 [00:08<01:40, 2.58it/s]
Loading 0: 12%|█▏ | 35/291 [00:09<00:58, 4.39it/s]
Loading 0: 12%|█▏ | 36/291 [00:09<00:54, 4.64it/s]
Loading 0: 13%|█▎ | 37/291 [00:09<00:48, 5.23it/s]
Loading 0: 13%|█▎ | 39/291 [00:09<00:57, 4.35it/s]
Loading 0: 14%|█▎ | 40/291 [00:10<01:16, 3.28it/s]
Loading 0: 14%|█▍ | 41/291 [00:11<01:37, 2.57it/s]
Loading 0: 15%|█▌ | 44/291 [00:11<00:55, 4.42it/s]
Loading 0: 15%|█▌ | 45/291 [00:11<00:52, 4.65it/s]
Loading 0: 16%|█▌ | 46/291 [00:11<00:46, 5.23it/s]
Loading 0: 16%|█▋ | 48/291 [00:12<00:55, 4.37it/s]
Loading 0: 17%|█▋ | 49/291 [00:12<01:14, 3.26it/s]
Loading 0: 17%|█▋ | 50/291 [00:13<01:34, 2.56it/s]
Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.35it/s]
Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.59it/s]
Loading 0: 19%|█▉ | 55/291 [00:13<00:45, 5.17it/s]
Loading 0: 20%|█▉ | 57/291 [00:14<00:54, 4.33it/s]
Loading 0: 20%|█▉ | 58/291 [00:15<01:11, 3.24it/s]
Loading 0: 20%|██ | 59/291 [00:15<01:29, 2.58it/s]
Loading 0: 21%|██▏ | 62/291 [00:15<00:51, 4.43it/s]
Loading 0: 22%|██▏ | 63/291 [00:16<00:48, 4.67it/s]
Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.23it/s]
Loading 0: 23%|██▎ | 66/291 [00:16<00:51, 4.37it/s]
Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.29it/s]
Loading 0: 23%|██▎ | 68/291 [00:18<01:26, 2.58it/s]
Loading 0: 24%|██▍ | 71/291 [00:18<00:49, 4.42it/s]
Loading 0: 25%|██▍ | 72/291 [00:18<00:46, 4.66it/s]
Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.25it/s]
Loading 0: 26%|██▌ | 75/291 [00:19<00:49, 4.37it/s]
Loading 0: 26%|██▌ | 76/291 [00:19<01:05, 3.30it/s]
Loading 0: 26%|██▋ | 77/291 [00:20<01:22, 2.60it/s]
Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.46it/s]
Loading 0: 28%|██▊ | 81/291 [00:20<00:44, 4.68it/s]
Loading 0: 28%|██▊ | 82/291 [00:20<00:39, 5.29it/s]
Loading 0: 29%|██▊ | 83/291 [00:20<00:38, 5.40it/s]
Loading 0: 29%|██▉ | 84/291 [00:21<00:58, 3.53it/s]
Loading 0: 29%|██▉ | 85/291 [00:22<01:14, 2.78it/s]
Loading 0: 30%|██▉ | 86/291 [00:22<01:30, 2.27it/s]
Loading 0: 31%|███ | 89/291 [00:22<00:47, 4.23it/s]
Loading 0: 31%|███ | 90/291 [00:23<00:44, 4.51it/s]
Loading 0: 31%|███▏ | 91/291 [00:23<00:38, 5.14it/s]
Loading 0: 32%|███▏ | 93/291 [00:23<00:46, 4.30it/s]
Loading 0: 32%|███▏ | 94/291 [00:24<01:00, 3.25it/s]
Loading 0: 33%|███▎ | 95/291 [00:24<01:16, 2.57it/s]
Loading 0: 34%|███▎ | 98/291 [00:25<00:43, 4.46it/s]
Loading 0: 34%|███▍ | 99/291 [00:25<00:40, 4.70it/s]
Loading 0: 34%|███▍ | 100/291 [00:25<00:36, 5.30it/s]
Loading 0: 35%|███▌ | 102/291 [00:26<00:43, 4.39it/s]
Loading 0: 35%|███▌ | 103/291 [00:26<00:56, 3.30it/s]
Loading 0: 36%|███▌ | 104/291 [00:27<01:11, 2.62it/s]
Loading 0: 37%|███▋ | 107/291 [00:27<00:40, 4.50it/s]
Loading 0: 37%|███▋ | 108/291 [00:27<00:38, 4.74it/s]
Loading 0: 38%|███▊ | 111/291 [00:28<00:39, 4.59it/s]
Loading 0: 38%|███▊ | 112/291 [00:28<00:50, 3.55it/s]
Loading 0: 39%|███▉ | 113/291 [00:29<01:03, 2.80it/s]
Loading 0: 40%|███▉ | 116/291 [00:29<00:38, 4.54it/s]
Loading 0: 40%|████ | 117/291 [00:29<00:36, 4.76it/s]
Loading 0: 41%|████ | 118/291 [00:29<00:32, 5.31it/s]
Loading 0: 41%|████ | 120/291 [00:30<00:38, 4.43it/s]
Loading 0: 42%|████▏ | 121/291 [00:31<00:50, 3.35it/s]
Loading 0: 42%|████▏ | 122/291 [00:31<01:05, 2.60it/s]
Loading 0: 43%|████▎ | 125/291 [00:31<00:37, 4.43it/s]
Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.66it/s]
Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.25it/s]
Loading 0: 44%|████▍ | 129/291 [00:32<00:36, 4.38it/s]
Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.32it/s]
Loading 0: 45%|████▌ | 131/291 [00:34<01:00, 2.62it/s]
Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.46it/s]
Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.67it/s]
Loading 0: 47%|████▋ | 136/291 [00:34<00:29, 5.26it/s]
Loading 0: 47%|████▋ | 138/291 [00:35<00:34, 4.41it/s]
Loading 0: 48%|████▊ | 139/291 [00:35<00:45, 3.33it/s]
Loading 0: 48%|████▊ | 140/291 [00:36<00:57, 2.63it/s]
Loading 0: 49%|████▉ | 143/291 [00:36<00:33, 4.46it/s]
Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.70it/s]
Loading 0: 50%|████▉ | 145/291 [00:36<00:27, 5.27it/s]
Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.39it/s]
Loading 0: 51%|█████ | 148/291 [00:37<00:43, 3.32it/s]
Loading 0: 51%|█████ | 149/291 [00:38<00:53, 2.64it/s]
Loading 0: 52%|█████▏ | 152/291 [00:38<00:30, 4.52it/s]
Loading 0: 53%|█████▎ | 153/291 [00:38<00:29, 4.75it/s]
Loading 0: 53%|█████▎ | 154/291 [00:39<00:25, 5.35it/s]
Loading 0: 54%|█████▎ | 156/291 [00:39<00:30, 4.44it/s]
Loading 0: 54%|█████▍ | 157/291 [00:40<00:40, 3.35it/s]
Loading 0: 54%|█████▍ | 158/291 [00:40<00:50, 2.64it/s]
Loading 0: 55%|█████▌ | 161/291 [00:41<00:28, 4.49it/s]
Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.74it/s]
Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.33it/s]
Loading 0: 57%|█████▋ | 165/291 [00:41<00:28, 4.41it/s]
Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.32it/s]
Loading 0: 57%|█████▋ | 167/291 [00:43<00:47, 2.62it/s]
Loading 0: 58%|█████▊ | 170/291 [00:43<00:27, 4.47it/s]
Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.67it/s]
Loading 0: 59%|█████▉ | 172/291 [00:43<00:23, 5.15it/s]
Loading 0: 59%|█████▉ | 173/291 [00:44<00:34, 3.46it/s]
Loading 0: 60%|██████ | 175/291 [00:44<00:24, 4.76it/s]
Loading 0: 60%|██████ | 176/291 [00:44<00:23, 4.98it/s]
Loading 0: 61%|██████ | 177/291 [00:44<00:20, 5.56it/s]
Loading 0: 62%|██████▏ | 179/291 [00:45<00:25, 4.42it/s]
Loading 0: 62%|██████▏ | 180/291 [00:45<00:34, 3.25it/s]
Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.57it/s]
Loading 0: 63%|██████▎ | 184/291 [00:46<00:24, 4.45it/s]
Loading 0: 64%|██████▎ | 185/291 [00:46<00:22, 4.70it/s]
Loading 0: 64%|██████▍ | 186/291 [00:46<00:19, 5.25it/s]
Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.32it/s]
Loading 0: 65%|██████▍ | 188/291 [00:47<00:29, 3.51it/s]
Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.62it/s]
Loading 0: 66%|██████▌ | 192/291 [00:48<00:27, 3.57it/s]
Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.94it/s]
Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.45it/s]
Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.14it/s]
Loading 0: 68%|██████▊ | 198/291 [00:50<00:21, 4.40it/s]
Loading 0: 68%|██████▊ | 199/291 [00:50<00:18, 4.96it/s]
Loading 0: 69%|██████▉ | 201/291 [00:51<00:21, 4.27it/s]
Loading 0: 69%|██████▉ | 202/291 [00:51<00:27, 3.25it/s]
Loading 0: 70%|██████▉ | 203/291 [00:52<00:34, 2.58it/s]
Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.36it/s]
Loading 0: 71%|███████ | 207/291 [00:52<00:18, 4.61it/s]
Loading 0: 71%|███████▏ | 208/291 [00:52<00:16, 5.17it/s]
Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.34it/s]
Loading 0: 73%|███████▎ | 211/291 [00:54<00:24, 3.28it/s]
Loading 0: 73%|███████▎ | 212/291 [00:54<00:30, 2.56it/s]
Loading 0: 74%|███████▍ | 215/291 [00:54<00:17, 4.41it/s]
Loading 0: 74%|███████▍ | 216/291 [00:55<00:16, 4.64it/s]
Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.19it/s]
Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.33it/s]
Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.27it/s]
Loading 0: 76%|███████▌ | 221/291 [00:56<00:26, 2.60it/s]
Loading 0: 77%|███████▋ | 224/291 [00:57<00:15, 4.46it/s]
Loading 0: 77%|███████▋ | 225/291 [00:57<00:14, 4.69it/s]
Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.21it/s]
Loading 0: 78%|███████▊ | 228/291 [00:58<00:14, 4.37it/s]
Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.31it/s]
Loading 0: 79%|███████▉ | 230/291 [00:59<00:23, 2.62it/s]
Loading 0: 80%|████████ | 233/291 [00:59<00:13, 4.45it/s]
Loading 0: 80%|████████ | 234/291 [00:59<00:12, 4.69it/s]
Loading 0: 81%|████████ | 235/291 [00:59<00:10, 5.26it/s]
Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.41it/s]
Loading 0: 82%|████████▏ | 238/291 [01:00<00:15, 3.32it/s]
Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.62it/s]
Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.50it/s]
Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.73it/s]
Loading 0: 84%|████████▍ | 244/291 [01:01<00:08, 5.32it/s]
Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.39it/s]
Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.30it/s]
Loading 0: 85%|████████▌ | 248/291 [01:03<00:16, 2.60it/s]
Loading 0: 86%|████████▋ | 251/291 [01:03<00:08, 4.47it/s]
Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.70it/s]
Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.28it/s]
Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.39it/s]
Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.29it/s]
Loading 0: 88%|████████▊ | 257/291 [01:06<00:13, 2.57it/s]
Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.43it/s]
Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.66it/s]
Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.24it/s]
Loading 0: 91%|█████████ | 264/291 [01:07<00:06, 4.38it/s]
Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.32it/s]
Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.63it/s]
Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.52it/s]
Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.74it/s]
Loading 0: 93%|█████████▎| 271/291 [01:08<00:03, 5.32it/s]
Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.40it/s]
Loading 0: 94%|█████████▍| 274/291 [01:09<00:05, 3.32it/s]
Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.62it/s]
Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.51it/s]
Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.74it/s]
Loading 0: 96%|█████████▌| 280/291 [01:11<00:02, 5.32it/s]
Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.58it/s]
Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.70it/s]
Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.89it/s]
Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.24it/s]
Loading 0: 98%|█████████▊| 286/291 [01:12<00:01, 4.92it/s]
Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.14it/s]
Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.36it/s]
Job alexdaoud-trainer-bagir-9730-v1-mkmlizer completed after 146.29s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-9730-v1-mkmlizer
Pipeline stage MKMLizer completed in 146.84s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-9730-v1
Waiting for inference service alexdaoud-trainer-bagir-9730-v1 to be ready
Inference service alexdaoud-trainer-bagir-9730-v1 ready after 211.51177096366882s
Pipeline stage MKMLDeployer completed in 212.09s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.0858154296875s
Received healthy response to inference request in 3.406982660293579s
Received healthy response to inference request in 4.091659784317017s
Received healthy response to inference request in 2.8917300701141357s
Received healthy response to inference request in 4.023957967758179s
5 requests
0 failed requests
5th percentile: 2.9947805881500242
10th percentile: 3.097831106185913
20th percentile: 3.3039321422576906
30th percentile: 3.530377721786499
40th percentile: 3.7771678447723387
50th percentile: 4.023957967758179
60th percentile: 4.051038694381714
70th percentile: 4.078119421005249
80th percentile: 4.290490913391113
90th percentile: 4.688153171539307
95th percentile: 4.8869843006134035
99th percentile: 5.0460492038726805
mean time: 3.900029182434082
%s, retrying in %s seconds...
Received healthy response to inference request in 5.281836986541748s
Received healthy response to inference request in 3.461923360824585s
Received healthy response to inference request in 3.693422794342041s
Received healthy response to inference request in 1.9656448364257812s
Received healthy response to inference request in 3.6162195205688477s
5 requests
0 failed requests
5th percentile: 2.264900541305542
10th percentile: 2.564156246185303
20th percentile: 3.162667655944824
30th percentile: 3.4927825927734375
40th percentile: 3.5545010566711426
50th percentile: 3.6162195205688477
60th percentile: 3.647100830078125
70th percentile: 3.677982139587402
80th percentile: 4.011105632781983
90th percentile: 4.646471309661865
95th percentile: 4.964154148101806
99th percentile: 5.21830041885376
mean time: 3.6038094997406005
Pipeline stage StressChecker completed in 40.30s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.52s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.28s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_9730_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-9730-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-9730-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-9730-v1-profiler ready after 190.45013070106506s
Pipeline stage MKMLProfilerDeployer completed in 190.81s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deplosw8sb:/code/chaiverse_profiler_1734273430 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deplosw8sb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734273430 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734273430/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deplosw8sb:/code/chaiverse_profiler_1734276206 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deplosw8sb:/code/chaiverse_profiler_1734276206 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deplosw8sb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734276206 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734276206/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9730-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-9730-v1-profiler
Service alexdaoud-trainer-bagir-9730-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.02s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9730-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.32s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-9730-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-9730-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-9730-v1-profiler ready after 60.16109085083008s
Pipeline stage MKMLProfilerDeployer completed in 60.46s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploqdfgv:/code/chaiverse_profiler_1734276926 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploqdfgv --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734276926 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734276926/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploqdfgv:/code/chaiverse_profiler_1734279694 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploqdfgv:/code/chaiverse_profiler_1734279695 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploqdfgv --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734279695 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734279695/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9730-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-9730-v1-profiler
Service alexdaoud-trainer-bagir-9730-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.21s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9730-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.73s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-9730-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-9730-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-9730-v1-profiler ready after 80.23404717445374s
Pipeline stage MKMLProfilerDeployer completed in 80.61s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploh7lqz:/code/chaiverse_profiler_1734280575 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploh7lqz --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734280575 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734280575/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploh7lqz:/code/chaiverse_profiler_1734283355 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad5ea5f42062c7b38e307bdfec877cd3c-deploh7lqz --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734283355 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734283355/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9730-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-9730-v1-profiler
Service alexdaoud-trainer-bagir-9730-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.27s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_9730_v1 status is now inactive due to auto deactivation removed underperforming models