Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-9008-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-9008-v1-mkmlizer to finish
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-9008-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-9008-v1-mkmlizer: Downloaded to shared memory in 32.451s
alexdaoud-trainer-bagir-9008-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmp6noykzfr, device:0
alexdaoud-trainer-bagir-9008-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-9008-v1-mkmlizer: quantized model in 86.167s
alexdaoud-trainer-bagir-9008-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-39 in 118.618s
alexdaoud-trainer-bagir-9008-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-9008-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-9008-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9008-v1
alexdaoud-trainer-bagir-9008-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9008-v1/config.json
alexdaoud-trainer-bagir-9008-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9008-v1/special_tokens_map.json
alexdaoud-trainer-bagir-9008-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9008-v1/tokenizer_config.json
alexdaoud-trainer-bagir-9008-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9008-v1/tokenizer.json
alexdaoud-trainer-bagir-9008-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-9008-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-9008-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:00<00:56, 5.12it/s]
Loading 0: 1%|▏ | 4/291 [00:01<01:32, 3.12it/s]
Loading 0: 2%|▏ | 5/291 [00:01<02:04, 2.30it/s]
Loading 0: 3%|▎ | 8/291 [00:02<01:04, 4.40it/s]
Loading 0: 3%|▎ | 9/291 [00:02<01:03, 4.47it/s]
Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.09it/s]
Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.24it/s]
Loading 0: 4%|▍ | 13/291 [00:03<01:27, 3.18it/s]
Loading 0: 5%|▍ | 14/291 [00:04<01:51, 2.49it/s]
Loading 0: 6%|▌ | 17/291 [00:04<01:04, 4.28it/s]
Loading 0: 6%|▌ | 18/291 [00:04<01:00, 4.52it/s]
Loading 0: 7%|▋ | 19/291 [00:04<00:53, 5.08it/s]
Loading 0: 7%|▋ | 21/291 [00:05<01:03, 4.28it/s]
Loading 0: 8%|▊ | 22/291 [00:05<01:23, 3.23it/s]
Loading 0: 8%|▊ | 23/291 [00:06<01:45, 2.54it/s]
Loading 0: 9%|▉ | 26/291 [00:06<01:01, 4.31it/s]
Loading 0: 9%|▉ | 27/291 [00:06<00:58, 4.54it/s]
Loading 0: 10%|▉ | 28/291 [00:07<00:51, 5.15it/s]
Loading 0: 10%|█ | 30/291 [00:07<01:00, 4.34it/s]
Loading 0: 11%|█ | 31/291 [00:08<01:19, 3.26it/s]
Loading 0: 11%|█ | 32/291 [00:08<01:40, 2.58it/s]
Loading 0: 12%|█▏ | 35/291 [00:09<00:57, 4.43it/s]
Loading 0: 12%|█▏ | 36/291 [00:09<00:56, 4.54it/s]
Loading 0: 13%|█▎ | 37/291 [00:09<00:49, 5.10it/s]
Loading 0: 13%|█▎ | 39/291 [00:09<00:58, 4.29it/s]
Loading 0: 14%|█▎ | 40/291 [00:10<01:17, 3.26it/s]
Loading 0: 14%|█▍ | 41/291 [00:11<01:36, 2.58it/s]
Loading 0: 15%|█▌ | 44/291 [00:11<00:55, 4.44it/s]
Loading 0: 15%|█▌ | 45/291 [00:11<00:52, 4.67it/s]
Loading 0: 16%|█▌ | 46/291 [00:11<00:46, 5.25it/s]
Loading 0: 16%|█▋ | 48/291 [00:12<00:55, 4.35it/s]
Loading 0: 17%|█▋ | 49/291 [00:12<01:13, 3.27it/s]
Loading 0: 17%|█▋ | 50/291 [00:13<01:34, 2.55it/s]
Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.33it/s]
Loading 0: 19%|█▊ | 54/291 [00:13<00:52, 4.55it/s]
Loading 0: 19%|█▉ | 55/291 [00:13<00:46, 5.10it/s]
Loading 0: 20%|█▉ | 57/291 [00:14<00:54, 4.27it/s]
Loading 0: 20%|█▉ | 58/291 [00:15<01:12, 3.20it/s]
Loading 0: 20%|██ | 59/291 [00:15<01:31, 2.54it/s]
Loading 0: 21%|██▏ | 62/291 [00:16<00:53, 4.31it/s]
Loading 0: 22%|██▏ | 63/291 [00:16<00:50, 4.54it/s]
Loading 0: 22%|██▏ | 64/291 [00:16<00:45, 5.04it/s]
Loading 0: 23%|██▎ | 66/291 [00:16<00:52, 4.28it/s]
Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.25it/s]
Loading 0: 23%|██▎ | 68/291 [00:18<01:26, 2.59it/s]
Loading 0: 24%|██▍ | 71/291 [00:18<00:50, 4.38it/s]
Loading 0: 25%|██▍ | 72/291 [00:18<00:47, 4.61it/s]
Loading 0: 25%|██▌ | 73/291 [00:18<00:42, 5.16it/s]
Loading 0: 26%|██▌ | 75/291 [00:19<00:50, 4.32it/s]
Loading 0: 26%|██▌ | 76/291 [00:19<01:06, 3.26it/s]
Loading 0: 26%|██▋ | 77/291 [00:20<01:22, 2.58it/s]
Loading 0: 27%|██▋ | 80/291 [00:20<00:48, 4.38it/s]
Loading 0: 28%|██▊ | 81/291 [00:20<00:45, 4.62it/s]
Loading 0: 28%|██▊ | 82/291 [00:20<00:40, 5.22it/s]
Loading 0: 29%|██▊ | 83/291 [00:21<00:39, 5.26it/s]
Loading 0: 29%|██▉ | 84/291 [00:21<00:59, 3.45it/s]
Loading 0: 29%|██▉ | 85/291 [00:22<01:15, 2.73it/s]
Loading 0: 30%|██▉ | 86/291 [00:22<01:31, 2.23it/s]
Loading 0: 31%|███ | 89/291 [00:23<00:48, 4.16it/s]
Loading 0: 31%|███ | 90/291 [00:23<00:45, 4.43it/s]
Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.00it/s]
Loading 0: 32%|███▏ | 93/291 [00:24<00:46, 4.22it/s]
Loading 0: 32%|███▏ | 94/291 [00:24<01:01, 3.19it/s]
Loading 0: 33%|███▎ | 95/291 [00:25<01:17, 2.53it/s]
Loading 0: 34%|███▎ | 98/291 [00:25<00:44, 4.34it/s]
Loading 0: 34%|███▍ | 99/291 [00:25<00:42, 4.57it/s]
Loading 0: 34%|███▍ | 100/291 [00:25<00:37, 5.16it/s]
Loading 0: 35%|███▌ | 102/291 [00:26<00:44, 4.27it/s]
Loading 0: 35%|███▌ | 103/291 [00:26<00:58, 3.20it/s]
Loading 0: 36%|███▌ | 104/291 [00:27<01:15, 2.49it/s]
Loading 0: 37%|███▋ | 107/291 [00:27<00:42, 4.29it/s]
Loading 0: 37%|███▋ | 108/291 [00:28<00:40, 4.54it/s]
Loading 0: 37%|███▋ | 109/291 [00:28<00:35, 5.12it/s]
Loading 0: 38%|███▊ | 111/291 [00:28<00:41, 4.30it/s]
Loading 0: 38%|███▊ | 112/291 [00:29<00:55, 3.20it/s]
Loading 0: 39%|███▉ | 113/291 [00:29<01:09, 2.57it/s]
Loading 0: 40%|███▉ | 116/291 [00:30<00:40, 4.36it/s]
Loading 0: 40%|████ | 117/291 [00:30<00:37, 4.61it/s]
Loading 0: 41%|████ | 118/291 [00:30<00:33, 5.19it/s]
Loading 0: 41%|████ | 120/291 [00:30<00:39, 4.36it/s]
Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.28it/s]
Loading 0: 42%|████▏ | 122/291 [00:32<01:05, 2.59it/s]
Loading 0: 43%|████▎ | 125/291 [00:32<00:37, 4.45it/s]
Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.68it/s]
Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.27it/s]
Loading 0: 44%|████▍ | 129/291 [00:33<00:36, 4.39it/s]
Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.30it/s]
Loading 0: 45%|████▌ | 131/291 [00:34<01:02, 2.55it/s]
Loading 0: 46%|████▌ | 134/291 [00:34<00:36, 4.34it/s]
Loading 0: 46%|████▋ | 135/291 [00:34<00:34, 4.58it/s]
Loading 0: 47%|████▋ | 136/291 [00:35<00:30, 5.04it/s]
Loading 0: 47%|████▋ | 138/291 [00:35<00:35, 4.26it/s]
Loading 0: 48%|████▊ | 139/291 [00:36<00:46, 3.24it/s]
Loading 0: 48%|████▊ | 140/291 [00:36<00:58, 2.58it/s]
Loading 0: 49%|████▉ | 143/291 [00:37<00:33, 4.43it/s]
Loading 0: 49%|████▉ | 144/291 [00:37<00:31, 4.68it/s]
Loading 0: 50%|████▉ | 145/291 [00:37<00:27, 5.24it/s]
Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.38it/s]
Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.30it/s]
Loading 0: 51%|█████ | 149/291 [00:39<00:54, 2.61it/s]
Loading 0: 52%|█████▏ | 152/291 [00:39<00:30, 4.50it/s]
Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.73it/s]
Loading 0: 53%|█████▎ | 154/291 [00:39<00:25, 5.33it/s]
Loading 0: 54%|█████▎ | 156/291 [00:40<00:30, 4.44it/s]
Loading 0: 54%|█████▍ | 157/291 [00:40<00:40, 3.30it/s]
Loading 0: 54%|█████▍ | 158/291 [00:41<00:50, 2.62it/s]
Loading 0: 55%|█████▌ | 161/291 [00:41<00:28, 4.49it/s]
Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.66it/s]
Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.23it/s]
Loading 0: 57%|█████▋ | 165/291 [00:42<00:28, 4.38it/s]
Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.30it/s]
Loading 0: 57%|█████▋ | 167/291 [00:43<00:47, 2.61it/s]
Loading 0: 58%|█████▊ | 170/291 [00:43<00:26, 4.49it/s]
Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.72it/s]
Loading 0: 59%|█████▉ | 172/291 [00:44<00:22, 5.29it/s]
Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.55it/s]
Loading 0: 60%|██████ | 175/291 [00:44<00:24, 4.83it/s]
Loading 0: 60%|██████ | 176/291 [00:45<00:22, 5.03it/s]
Loading 0: 61%|██████ | 177/291 [00:45<00:20, 5.60it/s]
Loading 0: 62%|██████▏ | 179/291 [00:45<00:25, 4.43it/s]
Loading 0: 62%|██████▏ | 180/291 [00:46<00:33, 3.27it/s]
Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.58it/s]
Loading 0: 63%|██████▎ | 184/291 [00:47<00:23, 4.52it/s]
Loading 0: 64%|██████▎ | 185/291 [00:47<00:22, 4.76it/s]
Loading 0: 64%|██████▍ | 186/291 [00:47<00:19, 5.29it/s]
Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.30it/s]
Loading 0: 65%|██████▍ | 188/291 [00:48<00:29, 3.48it/s]
Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.62it/s]
Loading 0: 66%|██████▌ | 192/291 [00:49<00:27, 3.56it/s]
Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.94it/s]
Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.45it/s]
Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.20it/s]
Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.46it/s]
Loading 0: 68%|██████▊ | 199/291 [00:51<00:18, 5.05it/s]
Loading 0: 69%|██████▉ | 201/291 [00:51<00:20, 4.32it/s]
Loading 0: 69%|██████▉ | 202/291 [00:52<00:27, 3.29it/s]
Loading 0: 70%|██████▉ | 203/291 [00:52<00:33, 2.63it/s]
Loading 0: 71%|███████ | 206/291 [00:53<00:19, 4.46it/s]
Loading 0: 71%|███████ | 207/291 [00:53<00:17, 4.70it/s]
Loading 0: 71%|███████▏ | 208/291 [00:53<00:15, 5.24it/s]
Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.40it/s]
Loading 0: 73%|███████▎ | 211/291 [00:54<00:24, 3.31it/s]
Loading 0: 73%|███████▎ | 212/291 [00:55<00:30, 2.61it/s]
Loading 0: 74%|███████▍ | 215/291 [00:55<00:16, 4.48it/s]
Loading 0: 74%|███████▍ | 216/291 [00:55<00:15, 4.70it/s]
Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.22it/s]
Loading 0: 75%|███████▌ | 219/291 [00:56<00:16, 4.37it/s]
Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.31it/s]
Loading 0: 76%|███████▌ | 221/291 [00:57<00:26, 2.61it/s]
Loading 0: 77%|███████▋ | 224/291 [00:57<00:14, 4.48it/s]
Loading 0: 77%|███████▋ | 225/291 [00:57<00:13, 4.72it/s]
Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.31it/s]
Loading 0: 78%|███████▊ | 228/291 [00:58<00:14, 4.42it/s]
Loading 0: 79%|███████▊ | 229/291 [00:59<00:18, 3.33it/s]
Loading 0: 79%|███████▉ | 230/291 [00:59<00:23, 2.63it/s]
Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.53it/s]
Loading 0: 80%|████████ | 234/291 [01:00<00:11, 4.76it/s]
Loading 0: 81%|████████ | 235/291 [01:00<00:10, 5.36it/s]
Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.42it/s]
Loading 0: 82%|████████▏ | 238/291 [01:01<00:15, 3.34it/s]
Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.63it/s]
Loading 0: 83%|████████▎ | 242/291 [01:02<00:10, 4.51it/s]
Loading 0: 84%|████████▎ | 243/291 [01:02<00:10, 4.74it/s]
Loading 0: 84%|████████▍ | 244/291 [01:02<00:08, 5.34it/s]
Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.41it/s]
Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.32it/s]
Loading 0: 85%|████████▌ | 248/291 [01:04<00:16, 2.63it/s]
Loading 0: 86%|████████▋ | 251/291 [01:04<00:08, 4.47it/s]
Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.71it/s]
Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.29it/s]
Loading 0: 88%|████████▊ | 255/291 [01:05<00:08, 4.43it/s]
Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.34it/s]
Loading 0: 88%|████████▊ | 257/291 [01:06<00:12, 2.64it/s]
Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.54it/s]
Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.77it/s]
Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.35it/s]
Loading 0: 91%|█████████ | 264/291 [01:07<00:06, 4.43it/s]
Loading 0: 91%|█████████ | 265/291 [01:08<00:07, 3.33it/s]
Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.61it/s]
Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.49it/s]
Loading 0: 93%|█████████▎| 270/291 [01:09<00:04, 4.72it/s]
Loading 0: 93%|█████████▎| 271/291 [01:09<00:03, 5.31it/s]
Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.41it/s]
Loading 0: 94%|█████████▍| 274/291 [01:10<00:05, 3.33it/s]
Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.64it/s]
Loading 0: 96%|█████████▌| 278/291 [01:11<00:02, 4.49it/s]
Loading 0: 96%|█████████▌| 279/291 [01:11<00:02, 4.72it/s]
Loading 0: 96%|█████████▌| 280/291 [01:11<00:02, 5.32it/s]
Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.59it/s]
Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.70it/s]
Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.89it/s]
Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.24it/s]
Loading 0: 98%|█████████▊| 286/291 [01:13<00:01, 4.90it/s]
Loading 0: 99%|█████████▊| 287/291 [01:13<00:00, 5.05it/s]
Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.33it/s]
Job alexdaoud-trainer-bagir-9008-v1-mkmlizer completed after 146.76s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-9008-v1-mkmlizer
Pipeline stage MKMLizer completed in 147.29s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.18s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-9008-v1
Waiting for inference service alexdaoud-trainer-bagir-9008-v1 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service alexdaoud-trainer-bagir-9008-v1 ready after 210.81206011772156s
Pipeline stage MKMLDeployer completed in 212.45s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.685803651809692s
Received healthy response to inference request in 5.427542209625244s
Received healthy response to inference request in 2.6877670288085938s
Received healthy response to inference request in 3.099597930908203s
Received healthy response to inference request in 3.0883445739746094s
5 requests
0 failed requests
5th percentile: 2.767882537841797
10th percentile: 2.847998046875
20th percentile: 3.008229064941406
30th percentile: 3.090595245361328
40th percentile: 3.0950965881347656
50th percentile: 3.099597930908203
60th percentile: 4.030775642395019
70th percentile: 4.961953353881835
80th percentile: 5.479194498062133
90th percentile: 5.582499074935913
95th percentile: 5.634151363372803
99th percentile: 5.675473194122315
mean time: 3.9978110790252686
%s, retrying in %s seconds...
Received healthy response to inference request in 2.644826889038086s
Received healthy response to inference request in 2.9679434299468994s
Received healthy response to inference request in 3.2133641242980957s
Received healthy response to inference request in 2.9478392601013184s
Received healthy response to inference request in 3.51596999168396s
5 requests
0 failed requests
5th percentile: 2.7054293632507322
10th percentile: 2.766031837463379
20th percentile: 2.887236785888672
30th percentile: 2.9518600940704345
40th percentile: 2.959901762008667
50th percentile: 2.9679434299468994
60th percentile: 3.066111707687378
70th percentile: 3.1642799854278563
80th percentile: 3.273885297775269
90th percentile: 3.394927644729614
95th percentile: 3.455448818206787
99th percentile: 3.5038657569885254
mean time: 3.057988739013672
Pipeline stage StressChecker completed in 38.95s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.53s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.40s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_9008_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-9008-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-9008-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-9008-v1-profiler ready after 210.49920558929443s
Pipeline stage MKMLProfilerDeployer completed in 210.88s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deploflwld:/code/chaiverse_profiler_1734286541 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deploflwld --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734286541 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734286541/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deploflwld:/code/chaiverse_profiler_1734289349 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deploflwld:/code/chaiverse_profiler_1734289350 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deploflwld --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734289350 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734289350/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9008-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-9008-v1-profiler
Service alexdaoud-trainer-bagir-9008-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.52s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9008-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.43s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-9008-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-9008-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-9008-v1-profiler ready after 120.28082799911499s
Pipeline stage MKMLProfilerDeployer completed in 120.59s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplo4l2m4:/code/chaiverse_profiler_1734290074 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplo4l2m4 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734290074 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734290074/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplo4l2m4:/code/chaiverse_profiler_1734292872 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplo4l2m4:/code/chaiverse_profiler_1734292872 --namespace tenant-chaiml-guanaco
clean up pipeline due to error=ISVCScriptError('Command failed with error: Defaulted container "kserve-container" out of: kserve-container, queue-proxy\nerror: unable to upgrade connection: container not found ("kserve-container")\n, output: ')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9008-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-9008-v1-profiler
Service alexdaoud-trainer-bagir-9008-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.21s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9008-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.38s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-9008-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-9008-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-9008-v1-profiler ready after 110.26708149909973s
Pipeline stage MKMLProfilerDeployer completed in 110.60s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplovh2p7:/code/chaiverse_profiler_1734293018 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplovh2p7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734293018 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734293018/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplovh2p7:/code/chaiverse_profiler_1734295787 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf2986df47fa544327c816e67dd845d22-deplovh2p7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734295787 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734295787/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-9008-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-9008-v1-profiler
Service alexdaoud-trainer-bagir-9008-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.51s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_9008_v1 status is now inactive due to auto deactivation removed underperforming models