developer_uid: chai_backend_admin
submission_id: alexdaoud-trainer-bagir-_6009_v1
model_name: alexdaoud-trainer-bagir-_6009_v1
model_group: alexdaoud/trainer_bagir_
status: inactive
timestamp: 2024-12-12T19:30:15+00:00
num_battles: 21667
num_wins: 10786
celo_rating: 1261.18
family_friendly_score: 0.583
family_friendly_standard_error: 0.006972962067873307
submission_type: basic
model_repo: alexdaoud/trainer_bagir_2024-12-11-checkpoint-19
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 256
max_output_tokens: 1
display_name: alexdaoud-trainer-bagir-_6009_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: alexdaoud/trainer_bagir_2024-12-11-checkpoint-19
model_size: 8B
ranking_group: single
us_pacific_date: 2024-12-12
win_ratio: 0.4978077260349841
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 256, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-6009-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-6009-v1-mkmlizer to finish
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-6009-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-6009-v1-mkmlizer: Downloaded to shared memory in 32.897s
alexdaoud-trainer-bagir-6009-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmp90tfmb_f, device:0
alexdaoud-trainer-bagir-6009-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
alexdaoud-trainer-bagir-6009-v1-mkmlizer: quantized model in 87.642s
alexdaoud-trainer-bagir-6009-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-19 in 120.540s
alexdaoud-trainer-bagir-6009-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-6009-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-6009-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-6009-v1
alexdaoud-trainer-bagir-6009-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-6009-v1/config.json
alexdaoud-trainer-bagir-6009-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-6009-v1/special_tokens_map.json
alexdaoud-trainer-bagir-6009-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-6009-v1/tokenizer_config.json
alexdaoud-trainer-bagir-6009-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-6009-v1/tokenizer.json
alexdaoud-trainer-bagir-6009-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-6009-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-6009-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 1%| | 3/291 [00:00<00:58, 4.95it/s] Loading 0: 1%|▏ | 4/291 [00:01<01:34, 3.03it/s] Loading 0: 2%|▏ | 5/291 [00:01<02:05, 2.28it/s] Loading 0: 3%|▎ | 8/291 [00:02<01:04, 4.38it/s] Loading 0: 3%|▎ | 9/291 [00:02<01:03, 4.45it/s] Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.06it/s] Loading 0: 4%|▍ | 12/291 [00:03<01:06, 4.17it/s] Loading 0: 4%|▍ | 13/291 [00:03<01:28, 3.14it/s] Loading 0: 5%|▍ | 14/291 [00:04<01:53, 2.45it/s] Loading 0: 6%|▌ | 17/291 [00:04<01:04, 4.23it/s] Loading 0: 6%|▌ | 18/291 [00:04<01:01, 4.47it/s] Loading 0: 7%|▋ | 19/291 [00:04<00:54, 5.02it/s] Loading 0: 7%|▋ | 21/291 [00:05<01:04, 4.20it/s] Loading 0: 8%|▊ | 22/291 [00:05<01:24, 3.18it/s] Loading 0: 8%|▊ | 23/291 [00:06<01:47, 2.49it/s] Loading 0: 9%|▉ | 26/291 [00:06<01:02, 4.24it/s] Loading 0: 9%|▉ | 27/291 [00:07<00:58, 4.49it/s] Loading 0: 10%|▉ | 28/291 [00:07<00:52, 5.04it/s] Loading 0: 10%|█ | 30/291 [00:07<01:01, 4.22it/s] Loading 0: 11%|█ | 31/291 [00:08<01:21, 3.18it/s] Loading 0: 11%|█ | 32/291 [00:09<01:43, 2.50it/s] Loading 0: 12%|█▏ | 35/291 [00:09<01:00, 4.26it/s] Loading 0: 12%|█▏ | 36/291 [00:09<00:56, 4.51it/s] Loading 0: 13%|█▎ | 37/291 [00:09<00:49, 5.09it/s] Loading 0: 13%|█▎ | 39/291 [00:10<00:59, 4.24it/s] Loading 0: 14%|█▎ | 40/291 [00:10<01:18, 3.20it/s] Loading 0: 14%|█▍ | 41/291 [00:11<01:39, 2.51it/s] Loading 0: 15%|█▌ | 44/291 [00:11<00:57, 4.33it/s] Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.57it/s] Loading 0: 16%|█▌ | 46/291 [00:11<00:47, 5.15it/s] Loading 0: 16%|█▋ | 48/291 [00:12<00:56, 4.27it/s] Loading 0: 17%|█▋ | 49/291 [00:13<01:15, 3.20it/s] Loading 0: 17%|█▋ | 50/291 [00:13<01:35, 2.53it/s] Loading 0: 18%|█▊ | 53/291 [00:13<00:55, 4.29it/s] Loading 0: 19%|█▊ | 54/291 [00:14<00:52, 4.54it/s] Loading 0: 19%|█▉ | 55/291 [00:14<00:46, 5.03it/s] Loading 0: 20%|█▉ | 57/291 [00:14<00:55, 4.23it/s] Loading 0: 20%|█▉ | 58/291 [00:15<01:12, 3.21it/s] Loading 0: 20%|██ | 59/291 [00:16<01:30, 2.55it/s] Loading 0: 21%|██▏ | 62/291 [00:16<00:52, 4.33it/s] Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.57it/s] Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.16it/s] Loading 0: 23%|██▎ | 66/291 [00:17<00:52, 4.29it/s] Loading 0: 23%|██▎ | 67/291 [00:17<01:09, 3.24it/s] Loading 0: 23%|██▎ | 68/291 [00:18<01:27, 2.55it/s] Loading 0: 24%|██▍ | 71/291 [00:18<00:50, 4.33it/s] Loading 0: 25%|██▍ | 72/291 [00:18<00:47, 4.57it/s] Loading 0: 25%|██▌ | 73/291 [00:18<00:42, 5.17it/s] Loading 0: 26%|██▌ | 75/291 [00:19<00:50, 4.31it/s] Loading 0: 26%|██▌ | 76/291 [00:20<01:06, 3.25it/s] Loading 0: 26%|██▋ | 77/291 [00:20<01:24, 2.53it/s] Loading 0: 27%|██▋ | 80/291 [00:20<00:49, 4.30it/s] Loading 0: 28%|██▊ | 81/291 [00:21<00:46, 4.55it/s] Loading 0: 28%|██▊ | 82/291 [00:21<00:40, 5.15it/s] Loading 0: 29%|██▊ | 83/291 [00:21<00:42, 4.90it/s] Loading 0: 29%|██▉ | 84/291 [00:22<01:02, 3.32it/s] Loading 0: 29%|██▉ | 85/291 [00:22<01:17, 2.65it/s] Loading 0: 30%|██▉ | 86/291 [00:23<01:34, 2.18it/s] Loading 0: 31%|███ | 89/291 [00:23<00:50, 4.02it/s] Loading 0: 31%|███ | 90/291 [00:23<00:46, 4.29it/s] Loading 0: 31%|███▏ | 91/291 [00:23<00:40, 4.88it/s] Loading 0: 32%|███▏ | 93/291 [00:24<00:48, 4.12it/s] Loading 0: 32%|███▏ | 94/291 [00:24<01:03, 3.13it/s] Loading 0: 33%|███▎ | 95/291 [00:25<01:18, 2.49it/s] Loading 0: 34%|███▎ | 98/291 [00:25<00:45, 4.26it/s] Loading 0: 34%|███▍ | 99/291 [00:26<00:42, 4.51it/s] Loading 0: 34%|███▍ | 100/291 [00:26<00:37, 5.05it/s] Loading 0: 35%|███▌ | 102/291 [00:26<00:44, 4.26it/s] Loading 0: 35%|███▌ | 103/291 [00:27<00:58, 3.22it/s] Loading 0: 36%|███▌ | 104/291 [00:27<01:13, 2.54it/s] Loading 0: 37%|███▋ | 107/291 [00:28<00:42, 4.38it/s] Loading 0: 37%|███▋ | 108/291 [00:28<00:39, 4.61it/s] Loading 0: 37%|███▋ | 109/291 [00:28<00:35, 5.19it/s] Loading 0: 38%|███▊ | 111/291 [00:29<00:41, 4.31it/s] Loading 0: 38%|███▊ | 112/291 [00:29<00:55, 3.24it/s] Loading 0: 39%|███▉ | 113/291 [00:30<01:09, 2.55it/s] Loading 0: 40%|███▉ | 116/291 [00:30<00:40, 4.34it/s] Loading 0: 40%|████ | 117/291 [00:30<00:38, 4.58it/s] Loading 0: 41%|████ | 118/291 [00:30<00:33, 5.14it/s] Loading 0: 41%|████ | 120/291 [00:31<00:39, 4.28it/s] Loading 0: 42%|████▏ | 121/291 [00:31<00:52, 3.22it/s] Loading 0: 42%|████▏ | 122/291 [00:32<01:06, 2.53it/s] Loading 0: 43%|████▎ | 125/291 [00:32<00:38, 4.34it/s] Loading 0: 43%|████▎ | 126/291 [00:33<00:36, 4.57it/s] Loading 0: 44%|████▎ | 127/291 [00:33<00:31, 5.14it/s] Loading 0: 44%|████▍ | 129/291 [00:33<00:38, 4.25it/s] Loading 0: 45%|████▍ | 130/291 [00:34<00:50, 3.19it/s] Loading 0: 45%|████▌ | 131/291 [00:34<01:03, 2.52it/s] Loading 0: 46%|████▌ | 134/291 [00:35<00:36, 4.29it/s] Loading 0: 46%|████▋ | 135/291 [00:35<00:34, 4.53it/s] Loading 0: 47%|████▋ | 136/291 [00:35<00:30, 5.11it/s] Loading 0: 47%|████▋ | 138/291 [00:36<00:35, 4.27it/s] Loading 0: 48%|████▊ | 139/291 [00:36<00:47, 3.23it/s] Loading 0: 48%|████▊ | 140/291 [00:37<00:59, 2.56it/s] Loading 0: 49%|████▉ | 143/291 [00:37<00:33, 4.40it/s] Loading 0: 49%|████▉ | 144/291 [00:37<00:31, 4.64it/s] Loading 0: 50%|████▉ | 145/291 [00:37<00:27, 5.23it/s] Loading 0: 51%|█████ | 147/291 [00:38<00:33, 4.35it/s] Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.27it/s] Loading 0: 51%|█████ | 149/291 [00:39<00:54, 2.58it/s] Loading 0: 52%|█████▏ | 152/291 [00:39<00:31, 4.40it/s] Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.63it/s] Loading 0: 53%|█████▎ | 154/291 [00:40<00:26, 5.22it/s] Loading 0: 54%|█████▎ | 156/291 [00:40<00:31, 4.34it/s] Loading 0: 54%|█████▍ | 157/291 [00:41<00:40, 3.27it/s] Loading 0: 54%|█████▍ | 158/291 [00:41<00:51, 2.58it/s] Loading 0: 55%|█████▌ | 161/291 [00:42<00:29, 4.38it/s] Loading 0: 56%|█████▌ | 162/291 [00:42<00:27, 4.61it/s] Loading 0: 56%|█████▌ | 163/291 [00:42<00:24, 5.20it/s] Loading 0: 57%|█████▋ | 165/291 [00:42<00:29, 4.33it/s] Loading 0: 57%|█████▋ | 166/291 [00:43<00:38, 3.26it/s] Loading 0: 57%|█████▋ | 167/291 [00:44<00:48, 2.57it/s] Loading 0: 58%|█████▊ | 170/291 [00:44<00:27, 4.39it/s] Loading 0: 59%|█████▉ | 171/291 [00:44<00:25, 4.62it/s] Loading 0: 59%|█████▉ | 172/291 [00:44<00:23, 5.14it/s] Loading 0: 59%|█████▉ | 173/291 [00:45<00:33, 3.48it/s] Loading 0: 60%|██████ | 175/291 [00:45<00:24, 4.78it/s] Loading 0: 60%|██████ | 176/291 [00:45<00:23, 5.00it/s] Loading 0: 61%|██████ | 177/291 [00:45<00:20, 5.67it/s] Loading 0: 62%|██████▏ | 179/291 [00:46<00:25, 4.47it/s] Loading 0: 62%|██████▏ | 180/291 [00:46<00:33, 3.27it/s] Loading 0: 62%|██████▏ | 181/291 [00:47<00:42, 2.57it/s] Loading 0: 63%|██████▎ | 184/291 [00:47<00:23, 4.49it/s] Loading 0: 64%|██████▎ | 185/291 [00:47<00:22, 4.71it/s] Loading 0: 64%|██████▍ | 186/291 [00:48<00:19, 5.31it/s] Loading 0: 64%|██████▍ | 187/291 [00:48<00:19, 5.25it/s] Loading 0: 65%|██████▍ | 188/291 [00:48<00:29, 3.43it/s] Loading 0: 65%|██████▍ | 189/291 [00:49<00:39, 2.58it/s] Loading 0: 66%|██████▌ | 192/291 [00:50<00:28, 3.51it/s] Loading 0: 66%|██████▋ | 193/291 [00:50<00:33, 2.90it/s] Loading 0: 67%|██████▋ | 194/291 [00:51<00:40, 2.42it/s] Loading 0: 68%|██████▊ | 197/291 [00:51<00:22, 4.14it/s] Loading 0: 68%|██████▊ | 198/291 [00:51<00:21, 4.38it/s] Loading 0: 68%|██████▊ | 199/291 [00:51<00:18, 4.92it/s] Loading 0: 69%|██████▉ | 201/291 [00:52<00:21, 4.23it/s] Loading 0: 69%|██████▉ | 202/291 [00:52<00:27, 3.23it/s] Loading 0: 70%|██████▉ | 203/291 [00:53<00:34, 2.58it/s] Loading 0: 71%|███████ | 206/291 [00:53<00:19, 4.37it/s] Loading 0: 71%|███████ | 207/291 [00:53<00:18, 4.61it/s] Loading 0: 71%|███████▏ | 208/291 [00:54<00:16, 5.13it/s] Loading 0: 72%|███████▏ | 210/291 [00:54<00:18, 4.31it/s] Loading 0: 73%|███████▎ | 211/291 [00:55<00:24, 3.25it/s] Loading 0: 73%|███████▎ | 212/291 [00:55<00:30, 2.57it/s] Loading 0: 74%|███████▍ | 215/291 [00:56<00:17, 4.41it/s] Loading 0: 74%|███████▍ | 216/291 [00:56<00:16, 4.64it/s] Loading 0: 75%|███████▍ | 217/291 [00:56<00:14, 5.23it/s] Loading 0: 75%|███████▌ | 219/291 [00:56<00:16, 4.33it/s] Loading 0: 76%|███████▌ | 220/291 [00:57<00:21, 3.26it/s] Loading 0: 76%|███████▌ | 221/291 [00:58<00:27, 2.59it/s] Loading 0: 77%|███████▋ | 224/291 [00:58<00:15, 4.40it/s] Loading 0: 77%|███████▋ | 225/291 [00:58<00:14, 4.63it/s] Loading 0: 78%|███████▊ | 226/291 [00:58<00:12, 5.20it/s] Loading 0: 78%|███████▊ | 228/291 [00:59<00:14, 4.32it/s] Loading 0: 79%|███████▊ | 229/291 [00:59<00:18, 3.28it/s] Loading 0: 79%|███████▉ | 230/291 [01:00<00:23, 2.59it/s] Loading 0: 80%|████████ | 233/291 [01:00<00:13, 4.38it/s] Loading 0: 80%|████████ | 234/291 [01:00<00:12, 4.61it/s] Loading 0: 81%|████████ | 235/291 [01:00<00:10, 5.15it/s] Loading 0: 81%|████████▏ | 237/291 [01:01<00:12, 4.31it/s] Loading 0: 82%|████████▏ | 238/291 [01:02<00:16, 3.25it/s] Loading 0: 82%|████████▏ | 239/291 [01:02<00:20, 2.58it/s] Loading 0: 83%|████████▎ | 242/291 [01:02<00:11, 4.44it/s] Loading 0: 84%|████████▎ | 243/291 [01:03<00:10, 4.67it/s] Loading 0: 84%|████████▍ | 244/291 [01:03<00:09, 5.22it/s] Loading 0: 85%|████████▍ | 246/291 [01:03<00:10, 4.34it/s] Loading 0: 85%|████████▍ | 247/291 [01:04<00:13, 3.26it/s] Loading 0: 85%|████████▌ | 248/291 [01:05<00:16, 2.58it/s] Loading 0: 86%|████████▋ | 251/291 [01:05<00:09, 4.43it/s] Loading 0: 87%|████████▋ | 252/291 [01:05<00:08, 4.66it/s] Loading 0: 87%|████████▋ | 253/291 [01:05<00:07, 5.21it/s] Loading 0: 88%|████████▊ | 255/291 [01:06<00:08, 4.34it/s] Loading 0: 88%|████████▊ | 256/291 [01:06<00:10, 3.28it/s] Loading 0: 88%|████████▊ | 257/291 [01:07<00:13, 2.60it/s] Loading 0: 89%|████████▉ | 260/291 [01:07<00:06, 4.46it/s] Loading 0: 90%|████████▉ | 261/291 [01:07<00:06, 4.69it/s] Loading 0: 90%|█████████ | 262/291 [01:07<00:05, 5.28it/s] Loading 0: 91%|█████████ | 264/291 [01:08<00:06, 4.37it/s] Loading 0: 91%|█████████ | 265/291 [01:08<00:07, 3.29it/s] Loading 0: 91%|█████████▏| 266/291 [01:09<00:09, 2.59it/s] Loading 0: 92%|█████████▏| 269/291 [01:09<00:04, 4.44it/s] Loading 0: 93%|█████████▎| 270/291 [01:09<00:04, 4.67it/s] Loading 0: 93%|█████████▎| 271/291 [01:10<00:03, 5.24it/s] Loading 0: 94%|█████████▍| 273/291 [01:10<00:04, 4.35it/s] Loading 0: 94%|█████████▍| 274/291 [01:11<00:05, 3.29it/s] Loading 0: 95%|█████████▍| 275/291 [01:11<00:06, 2.60it/s] Loading 0: 96%|█████████▌| 278/291 [01:12<00:02, 4.48it/s] Loading 0: 96%|█████████▌| 279/291 [01:12<00:02, 4.70it/s] Loading 0: 96%|█████████▌| 280/291 [01:12<00:02, 5.29it/s] Loading 0: 97%|█████████▋| 281/291 [01:12<00:02, 3.52it/s] Loading 0: 97%|█████████▋| 282/291 [01:13<00:03, 2.66it/s] Loading 0: 98%|█████████▊| 284/291 [01:13<00:01, 3.82it/s] Loading 0: 98%|█████████▊| 285/291 [01:13<00:01, 4.17it/s] Loading 0: 98%|█████████▊| 286/291 [01:14<00:01, 4.83it/s] Loading 0: 99%|█████████▊| 287/291 [01:14<00:00, 4.88it/s] Loading 0: 99%|█████████▉| 288/291 [01:14<00:00, 3.24it/s]
Job alexdaoud-trainer-bagir-6009-v1-mkmlizer completed after 145.56s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-6009-v1-mkmlizer
Pipeline stage MKMLizer completed in 146.11s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-6009-v1
Waiting for inference service alexdaoud-trainer-bagir-6009-v1 to be ready
Inference service alexdaoud-trainer-bagir-6009-v1 ready after 190.9623839855194s
Pipeline stage MKMLDeployer completed in 191.48s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.63740611076355s
Received healthy response to inference request in 2.7090516090393066s
Received healthy response to inference request in 3.545893430709839s
Received healthy response to inference request in 5.448329210281372s
Received healthy response to inference request in 2.770117998123169s
5 requests
0 failed requests
5th percentile: 2.721264886856079
10th percentile: 2.7334781646728517
20th percentile: 2.7579047203063967
30th percentile: 2.925273084640503
40th percentile: 3.235583257675171
50th percentile: 3.545893430709839
60th percentile: 4.306867742538452
70th percentile: 5.067842054367065
80th percentile: 5.486144590377807
90th percentile: 5.561775350570679
95th percentile: 5.599590730667114
99th percentile: 5.629843034744263
mean time: 4.022159671783447
%s, retrying in %s seconds...
Received healthy response to inference request in 3.4756853580474854s
Received healthy response to inference request in 3.4563376903533936s
Received healthy response to inference request in 3.8942019939422607s
Received healthy response to inference request in 2.708456039428711s
Received healthy response to inference request in 3.406601667404175s
5 requests
0 failed requests
5th percentile: 2.8480851650238037
10th percentile: 2.9877142906188965
20th percentile: 3.266972541809082
30th percentile: 3.4165488719940185
40th percentile: 3.4364432811737062
50th percentile: 3.4563376903533936
60th percentile: 3.4640767574310303
70th percentile: 3.471815824508667
80th percentile: 3.5593886852264407
90th percentile: 3.7267953395843505
95th percentile: 3.8104986667633054
99th percentile: 3.87746132850647
mean time: 3.388256549835205
Pipeline stage StressChecker completed in 39.66s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.35s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.08s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_6009_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-6009-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-6009-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-6009-v1-profiler ready after 190.43145608901978s
Pipeline stage MKMLProfilerDeployer completed in 190.79s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplofhpb5:/code/chaiverse_profiler_1734032423 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplofhpb5 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734032423 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734032423/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplofhpb5:/code/chaiverse_profiler_1734035216 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplofhpb5 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734035216 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734035216/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-6009-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-6009-v1-profiler
Service alexdaoud-trainer-bagir-6009-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.22s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-6009-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.25s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-6009-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-6009-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-6009-v1-profiler ready after 200.48118543624878s
Pipeline stage MKMLProfilerDeployer completed in 201.00s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplowcdbc:/code/chaiverse_profiler_1734036066 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplowcdbc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734036066 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734036066/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplowcdbc:/code/chaiverse_profiler_1734038843 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplowcdbc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734038843 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734038843/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplog7624:/code/chaiverse_profiler_1734038923 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplog7624 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734038923 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734038923/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-6009-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-6009-v1-profiler
Service alexdaoud-trainer-bagir-6009-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.15s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-6009-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.30s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-6009-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-6009-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-6009-v1-profiler ready after 70.18928217887878s
Pipeline stage MKMLProfilerDeployer completed in 70.50s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplo5964n:/code/chaiverse_profiler_1734039563 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplo5964n --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734039563 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734039563/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplo5964n:/code/chaiverse_profiler_1734042372 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplo5964n:/code/chaiverse_profiler_1734042373 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba3b8a3187a2d3f9a4971141fa83d5ff80-deplo5964n --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734042373 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734042373/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-6009-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-6009-v1-profiler
Service alexdaoud-trainer-bagir-6009-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.05s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_6009_v1 status is now inactive due to auto deactivation removed underperforming models