Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-5656-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-5656-v1-mkmlizer to finish
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-5656-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-5656-v1-mkmlizer: Downloaded to shared memory in 33.409s
alexdaoud-trainer-bagir-5656-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpy758gyrz, device:0
alexdaoud-trainer-bagir-5656-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-5656-v1-mkmlizer: quantized model in 85.891s
alexdaoud-trainer-bagir-5656-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-89 in 119.300s
alexdaoud-trainer-bagir-5656-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-5656-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-5656-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-5656-v1
alexdaoud-trainer-bagir-5656-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-5656-v1/config.json
alexdaoud-trainer-bagir-5656-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-5656-v1/special_tokens_map.json
alexdaoud-trainer-bagir-5656-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-5656-v1/tokenizer_config.json
alexdaoud-trainer-bagir-5656-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-5656-v1/tokenizer.json
alexdaoud-trainer-bagir-5656-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-5656-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-5656-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:00<00:57, 5.01it/s]
Loading 0: 1%|▏ | 4/291 [00:01<01:33, 3.06it/s]
Loading 0: 2%|▏ | 5/291 [00:01<02:06, 2.27it/s]
Loading 0: 3%|▎ | 8/291 [00:02<01:05, 4.33it/s]
Loading 0: 3%|▎ | 9/291 [00:02<01:04, 4.39it/s]
Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.03it/s]
Loading 0: 4%|▍ | 12/291 [00:03<01:06, 4.18it/s]
Loading 0: 4%|▍ | 13/291 [00:03<01:28, 3.16it/s]
Loading 0: 5%|▍ | 14/291 [00:04<01:51, 2.48it/s]
Loading 0: 6%|▌ | 17/291 [00:04<01:04, 4.28it/s]
Loading 0: 6%|▌ | 18/291 [00:04<01:00, 4.51it/s]
Loading 0: 7%|▋ | 19/291 [00:04<00:54, 5.02it/s]
Loading 0: 7%|▋ | 21/291 [00:05<01:03, 4.23it/s]
Loading 0: 8%|▊ | 22/291 [00:05<01:23, 3.21it/s]
Loading 0: 8%|▊ | 23/291 [00:06<01:45, 2.54it/s]
Loading 0: 9%|▉ | 26/291 [00:06<01:01, 4.34it/s]
Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.58it/s]
Loading 0: 10%|▉ | 28/291 [00:07<00:51, 5.11it/s]
Loading 0: 10%|█ | 30/291 [00:07<01:00, 4.30it/s]
Loading 0: 11%|█ | 31/291 [00:08<01:20, 3.25it/s]
Loading 0: 11%|█ | 32/291 [00:08<01:41, 2.56it/s]
Loading 0: 12%|█▏ | 35/291 [00:09<00:58, 4.41it/s]
Loading 0: 12%|█▏ | 36/291 [00:09<00:54, 4.71it/s]
Loading 0: 13%|█▎ | 37/291 [00:09<00:47, 5.31it/s]
Loading 0: 13%|█▎ | 39/291 [00:09<00:57, 4.37it/s]
Loading 0: 14%|█▎ | 40/291 [00:10<01:16, 3.27it/s]
Loading 0: 14%|█▍ | 41/291 [00:11<01:37, 2.57it/s]
Loading 0: 15%|█▌ | 44/291 [00:11<00:55, 4.41it/s]
Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.64it/s]
Loading 0: 16%|█▌ | 46/291 [00:11<00:47, 5.21it/s]
Loading 0: 16%|█▋ | 48/291 [00:12<00:56, 4.31it/s]
Loading 0: 17%|█▋ | 49/291 [00:12<01:14, 3.25it/s]
Loading 0: 17%|█▋ | 50/291 [00:13<01:34, 2.55it/s]
Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.33it/s]
Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.56it/s]
Loading 0: 19%|█▉ | 55/291 [00:14<00:45, 5.14it/s]
Loading 0: 20%|█▉ | 57/291 [00:14<00:54, 4.29it/s]
Loading 0: 20%|█▉ | 58/291 [00:15<01:12, 3.23it/s]
Loading 0: 20%|██ | 59/291 [00:15<01:30, 2.55it/s]
Loading 0: 21%|██▏ | 62/291 [00:16<00:52, 4.35it/s]
Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.59it/s]
Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.18it/s]
Loading 0: 23%|██▎ | 66/291 [00:16<00:52, 4.31it/s]
Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.25it/s]
Loading 0: 23%|██▎ | 68/291 [00:18<01:26, 2.57it/s]
Loading 0: 24%|██▍ | 71/291 [00:18<00:50, 4.40it/s]
Loading 0: 25%|██▍ | 72/291 [00:18<00:47, 4.64it/s]
Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.24it/s]
Loading 0: 26%|██▌ | 75/291 [00:19<00:49, 4.36it/s]
Loading 0: 26%|██▌ | 76/291 [00:19<01:05, 3.29it/s]
Loading 0: 26%|██▋ | 77/291 [00:20<01:23, 2.57it/s]
Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.42it/s]
Loading 0: 28%|██▊ | 81/291 [00:20<00:45, 4.64it/s]
Loading 0: 28%|██▊ | 82/291 [00:20<00:39, 5.23it/s]
Loading 0: 29%|██▊ | 83/291 [00:21<00:39, 5.21it/s]
Loading 0: 29%|██▉ | 84/291 [00:21<01:00, 3.43it/s]
Loading 0: 29%|██▉ | 85/291 [00:22<01:16, 2.71it/s]
Loading 0: 30%|██▉ | 86/291 [00:22<01:32, 2.22it/s]
Loading 0: 31%|███ | 89/291 [00:23<00:48, 4.13it/s]
Loading 0: 31%|███ | 90/291 [00:23<00:45, 4.41it/s]
Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.01it/s]
Loading 0: 32%|███▏ | 93/291 [00:24<00:46, 4.22it/s]
Loading 0: 32%|███▏ | 94/291 [00:24<01:02, 3.16it/s]
Loading 0: 33%|███▎ | 95/291 [00:25<01:18, 2.50it/s]
Loading 0: 34%|███▎ | 98/291 [00:25<00:44, 4.34it/s]
Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.59it/s]
Loading 0: 35%|███▌ | 102/291 [00:26<00:41, 4.51it/s]
Loading 0: 35%|███▌ | 103/291 [00:26<00:53, 3.50it/s]
Loading 0: 36%|███▌ | 104/291 [00:27<01:07, 2.75it/s]
Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.42it/s]
Loading 0: 37%|███▋ | 108/291 [00:27<00:39, 4.64it/s]
Loading 0: 38%|███▊ | 110/291 [00:28<00:28, 6.28it/s]
Loading 0: 38%|███▊ | 112/291 [00:29<00:53, 3.36it/s]
Loading 0: 39%|███▉ | 113/291 [00:29<01:04, 2.75it/s]
Loading 0: 40%|███▉ | 116/291 [00:30<00:40, 4.36it/s]
Loading 0: 40%|████ | 117/291 [00:30<00:38, 4.57it/s]
Loading 0: 41%|████ | 120/291 [00:30<00:37, 4.51it/s]
Loading 0: 42%|████▏ | 121/291 [00:31<00:48, 3.54it/s]
Loading 0: 42%|████▏ | 122/291 [00:32<00:59, 2.82it/s]
Loading 0: 43%|████▎ | 125/291 [00:32<00:36, 4.50it/s]
Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.69it/s]
Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.24it/s]
Loading 0: 44%|████▍ | 129/291 [00:33<00:36, 4.39it/s]
Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.31it/s]
Loading 0: 45%|████▌ | 131/291 [00:34<01:01, 2.62it/s]
Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.47it/s]
Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.69it/s]
Loading 0: 47%|████▋ | 137/291 [00:34<00:23, 6.43it/s]
Loading 0: 48%|████▊ | 139/291 [00:36<00:45, 3.36it/s]
Loading 0: 48%|████▊ | 140/291 [00:36<00:54, 2.75it/s]
Loading 0: 49%|████▉ | 143/291 [00:36<00:34, 4.35it/s]
Loading 0: 49%|████▉ | 144/291 [00:37<00:32, 4.56it/s]
Loading 0: 50%|████▉ | 145/291 [00:37<00:28, 5.04it/s]
Loading 0: 51%|█████ | 147/291 [00:37<00:33, 4.32it/s]
Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.29it/s]
Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.62it/s]
Loading 0: 52%|█████▏ | 152/291 [00:39<00:31, 4.41it/s]
Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.64it/s]
Loading 0: 53%|█████▎ | 154/291 [00:39<00:26, 5.23it/s]
Loading 0: 54%|█████▎ | 156/291 [00:40<00:30, 4.37it/s]
Loading 0: 54%|█████▍ | 157/291 [00:40<00:40, 3.30it/s]
Loading 0: 54%|█████▍ | 158/291 [00:41<00:51, 2.60it/s]
Loading 0: 55%|█████▌ | 161/291 [00:41<00:29, 4.45it/s]
Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.69it/s]
Loading 0: 57%|█████▋ | 165/291 [00:42<00:27, 4.57it/s]
Loading 0: 57%|█████▋ | 166/291 [00:42<00:35, 3.52it/s]
Loading 0: 57%|█████▋ | 167/291 [00:43<00:44, 2.81it/s]
Loading 0: 58%|█████▊ | 170/291 [00:43<00:27, 4.48it/s]
Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.69it/s]
Loading 0: 59%|█████▉ | 172/291 [00:44<00:22, 5.21it/s]
Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.57it/s]
Loading 0: 60%|██████ | 175/291 [00:44<00:23, 4.85it/s]
Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.07it/s]
Loading 0: 61%|██████ | 177/291 [00:45<00:19, 5.73it/s]
Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.53it/s]
Loading 0: 62%|██████▏ | 180/291 [00:46<00:33, 3.34it/s]
Loading 0: 62%|██████▏ | 181/291 [00:46<00:41, 2.62it/s]
Loading 0: 63%|██████▎ | 184/291 [00:47<00:23, 4.53it/s]
Loading 0: 64%|██████▎ | 185/291 [00:47<00:22, 4.77it/s]
Loading 0: 64%|██████▍ | 186/291 [00:47<00:19, 5.38it/s]
Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.46it/s]
Loading 0: 65%|██████▍ | 188/291 [00:48<00:29, 3.53it/s]
Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.64it/s]
Loading 0: 66%|██████▌ | 192/291 [00:49<00:27, 3.57it/s]
Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.94it/s]
Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.45it/s]
Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.15it/s]
Loading 0: 68%|██████▊ | 198/291 [00:50<00:21, 4.42it/s]
Loading 0: 69%|██████▉ | 201/291 [00:51<00:20, 4.42it/s]
Loading 0: 69%|██████▉ | 202/291 [00:52<00:25, 3.48it/s]
Loading 0: 70%|██████▉ | 203/291 [00:52<00:31, 2.79it/s]
Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.46it/s]
Loading 0: 71%|███████ | 207/291 [00:53<00:17, 4.68it/s]
Loading 0: 71%|███████▏ | 208/291 [00:53<00:15, 5.23it/s]
Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.42it/s]
Loading 0: 73%|███████▎ | 211/291 [00:54<00:24, 3.33it/s]
Loading 0: 73%|███████▎ | 212/291 [00:55<00:30, 2.62it/s]
Loading 0: 74%|███████▍ | 215/291 [00:55<00:17, 4.45it/s]
Loading 0: 74%|███████▍ | 216/291 [00:55<00:16, 4.68it/s]
Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.25it/s]
Loading 0: 75%|███████▌ | 219/291 [00:56<00:16, 4.38it/s]
Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.32it/s]
Loading 0: 76%|███████▌ | 221/291 [00:57<00:26, 2.63it/s]
Loading 0: 77%|███████▋ | 224/291 [00:57<00:14, 4.52it/s]
Loading 0: 77%|███████▋ | 225/291 [00:57<00:13, 4.83it/s]
Loading 0: 78%|███████▊ | 228/291 [00:58<00:13, 4.64it/s]
Loading 0: 79%|███████▊ | 229/291 [00:58<00:17, 3.58it/s]
Loading 0: 79%|███████▉ | 230/291 [00:59<00:21, 2.83it/s]
Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.58it/s]
Loading 0: 80%|████████ | 234/291 [00:59<00:11, 4.87it/s]
Loading 0: 81%|████████▏ | 237/291 [01:00<00:11, 4.66it/s]
Loading 0: 82%|████████▏ | 238/291 [01:01<00:14, 3.62it/s]
Loading 0: 82%|████████▏ | 239/291 [01:01<00:18, 2.87it/s]
Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.57it/s]
Loading 0: 84%|████████▎ | 243/291 [01:02<00:10, 4.78it/s]
Loading 0: 85%|████████▍ | 246/291 [01:02<00:09, 4.63it/s]
Loading 0: 85%|████████▍ | 247/291 [01:03<00:12, 3.60it/s]
Loading 0: 85%|████████▌ | 248/291 [01:04<00:15, 2.84it/s]
Loading 0: 86%|████████▋ | 251/291 [01:04<00:08, 4.50it/s]
Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.71it/s]
Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.25it/s]
Loading 0: 88%|████████▊ | 255/291 [01:05<00:08, 4.37it/s]
Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.34it/s]
Loading 0: 88%|████████▊ | 257/291 [01:06<00:12, 2.62it/s]
Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.46it/s]
Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.71it/s]
Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.28it/s]
Loading 0: 91%|█████████ | 264/291 [01:07<00:06, 4.41it/s]
Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.33it/s]
Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.64it/s]
Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.48it/s]
Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.72it/s]
Loading 0: 93%|█████████▎| 271/291 [01:09<00:03, 5.31it/s]
Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.39it/s]
Loading 0: 94%|█████████▍| 274/291 [01:10<00:05, 3.30it/s]
Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.62it/s]
Loading 0: 96%|█████████▌| 278/291 [01:11<00:02, 4.47it/s]
Loading 0: 96%|█████████▌| 279/291 [01:11<00:02, 4.71it/s]
Loading 0: 96%|█████████▌| 280/291 [01:11<00:02, 5.30it/s]
Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.56it/s]
Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.70it/s]
Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.88it/s]
Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.23it/s]
Loading 0: 98%|█████████▊| 286/291 [01:12<00:01, 4.90it/s]
Loading 0: 99%|█████████▊| 287/291 [01:13<00:00, 5.05it/s]
Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.32it/s]
Job alexdaoud-trainer-bagir-5656-v1-mkmlizer completed after 146.4s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-5656-v1-mkmlizer
Pipeline stage MKMLizer completed in 146.97s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-5656-v1
Waiting for inference service alexdaoud-trainer-bagir-5656-v1 to be ready
Inference service alexdaoud-trainer-bagir-5656-v1 ready after 230.8015580177307s
Pipeline stage MKMLDeployer completed in 231.41s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.7633752822875977s
Received healthy response to inference request in 3.7562637329101562s
Received healthy response to inference request in 4.400740385055542s
Received healthy response to inference request in 2.9449479579925537s
Received healthy response to inference request in 3.934724807739258s
5 requests
0 failed requests
5th percentile: 3.107211112976074
10th percentile: 3.2694742679595947
20th percentile: 3.5940005779266357
30th percentile: 3.7576860427856444
40th percentile: 3.7605306625366213
50th percentile: 3.7633752822875977
60th percentile: 3.831915092468262
70th percentile: 3.9004549026489257
80th percentile: 4.0279279232025145
90th percentile: 4.214334154129029
95th percentile: 4.307537269592285
99th percentile: 4.38209976196289
mean time: 3.7600104331970217
%s, retrying in %s seconds...
Received healthy response to inference request in 3.2642016410827637s
Received healthy response to inference request in 2.2631936073303223s
Received healthy response to inference request in 3.221583843231201s
Received healthy response to inference request in 2.8311848640441895s
Received healthy response to inference request in 2.6456422805786133s
5 requests
0 failed requests
5th percentile: 2.3396833419799803
10th percentile: 2.4161730766296388
20th percentile: 2.5691525459289553
30th percentile: 2.6827507972717286
40th percentile: 2.756967830657959
50th percentile: 2.8311848640441895
60th percentile: 2.9873444557189943
70th percentile: 3.1435040473937987
80th percentile: 3.2301074028015138
90th percentile: 3.2471545219421385
95th percentile: 3.255678081512451
99th percentile: 3.262496929168701
mean time: 2.845161247253418
Pipeline stage StressChecker completed in 35.94s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.24s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.21s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_5656_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-5656-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-5656-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-5656-v1-profiler ready after 230.52043795585632s
Pipeline stage MKMLProfilerDeployer completed in 230.89s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo6brcj:/code/chaiverse_profiler_1734452428 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo6brcj --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734452428 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734452428/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo6brcj:/code/chaiverse_profiler_1734455196 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo6brcj:/code/chaiverse_profiler_1734455197 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo6brcj --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734455197 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734455197/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-5656-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-5656-v1-profiler
Service alexdaoud-trainer-bagir-5656-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.53s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-5656-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.70s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-5656-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-5656-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-5656-v1-profiler ready after 170.406183719635s
Pipeline stage MKMLProfilerDeployer completed in 170.74s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deploxw4vm:/code/chaiverse_profiler_1734456004 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deploxw4vm --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734456004 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734456004/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deploxw4vm:/code/chaiverse_profiler_1734458773 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deploxw4vm:/code/chaiverse_profiler_1734458774 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deploxw4vm --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734458774 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734458774/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-5656-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-5656-v1-profiler
Service alexdaoud-trainer-bagir-5656-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.38s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-5656-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.57s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-5656-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-5656-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-5656-v1-profiler ready after 110.32262539863586s
Pipeline stage MKMLProfilerDeployer completed in 110.65s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo2kkwg:/code/chaiverse_profiler_1734459569 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo2kkwg --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734459569 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734459569/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo2kkwg:/code/chaiverse_profiler_1734462366 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba695aa38ee5bb85f122cf8d01eb52b8f1-deplo2kkwg --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734462366 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734462366/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-5656-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-5656-v1-profiler
Service alexdaoud-trainer-bagir-5656-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.58s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_5656_v1 status is now inactive due to auto deactivation removed underperforming models