developer_uid: chai_backend_admin
submission_id: alexdaoud-trainer-bagir-_4397_v1
model_name: alexdaoud-trainer-bagir-_4397_v1
model_group: alexdaoud/trainer_bagir_
status: inactive
timestamp: 2024-12-16T20:21:25+00:00
num_battles: 20722
num_wins: 10624
celo_rating: 1269.44
family_friendly_score: 0.5788
family_friendly_standard_error: 0.006982700910106346
submission_type: basic
model_repo: alexdaoud/trainer_bagir_2024-12-11-checkpoint-68
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 256
max_output_tokens: 1
display_name: alexdaoud-trainer-bagir-_4397_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: alexdaoud/trainer_bagir_2024-12-11-checkpoint-68
model_size: 8B
ranking_group: single
us_pacific_date: 2024-12-16
win_ratio: 0.512691825113406
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 256, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-4397-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-4397-v1-mkmlizer to finish
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4397-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-4397-v1-mkmlizer: Downloaded to shared memory in 30.319s
alexdaoud-trainer-bagir-4397-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpu9bsbrk3, device:0
alexdaoud-trainer-bagir-4397-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-4397-v1-mkmlizer: quantized model in 85.106s
alexdaoud-trainer-bagir-4397-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-68 in 115.426s
alexdaoud-trainer-bagir-4397-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-4397-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-4397-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4397-v1
alexdaoud-trainer-bagir-4397-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4397-v1/tokenizer.json
alexdaoud-trainer-bagir-4397-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4397-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-4397-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 1%| | 3/291 [00:00<00:56, 5.10it/s] Loading 0: 1%|▏ | 4/291 [00:01<01:32, 3.11it/s] Loading 0: 2%|▏ | 5/291 [00:01<02:03, 2.33it/s] Loading 0: 3%|▎ | 8/291 [00:02<01:03, 4.44it/s] Loading 0: 3%|▎ | 9/291 [00:02<01:02, 4.50it/s] Loading 0: 3%|▎ | 10/291 [00:02<00:54, 5.13it/s] Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.26it/s] Loading 0: 4%|▍ | 13/291 [00:03<01:27, 3.18it/s] Loading 0: 5%|▍ | 14/291 [00:04<01:50, 2.51it/s] Loading 0: 6%|▌ | 17/291 [00:04<01:03, 4.34it/s] Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.57it/s] Loading 0: 7%|▋ | 19/291 [00:04<00:53, 5.12it/s] Loading 0: 7%|▋ | 21/291 [00:05<01:02, 4.29it/s] Loading 0: 8%|▊ | 22/291 [00:05<01:23, 3.24it/s] Loading 0: 8%|▊ | 23/291 [00:06<01:45, 2.54it/s] Loading 0: 9%|▉ | 26/291 [00:06<01:01, 4.34it/s] Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.58it/s] Loading 0: 10%|█ | 30/291 [00:07<00:58, 4.49it/s] Loading 0: 11%|█ | 31/291 [00:08<01:14, 3.50it/s] Loading 0: 11%|█ | 32/291 [00:08<01:34, 2.75it/s] Loading 0: 12%|█▏ | 35/291 [00:09<00:57, 4.42it/s] Loading 0: 12%|█▏ | 36/291 [00:09<00:54, 4.64it/s] Loading 0: 13%|█▎ | 39/291 [00:09<00:55, 4.52it/s] Loading 0: 14%|█▎ | 40/291 [00:10<01:11, 3.53it/s] Loading 0: 14%|█▍ | 41/291 [00:11<01:29, 2.80it/s] Loading 0: 15%|█▌ | 44/291 [00:11<00:55, 4.43it/s] Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.62it/s] Loading 0: 16%|█▌ | 46/291 [00:11<00:47, 5.11it/s] Loading 0: 16%|█▋ | 48/291 [00:12<00:56, 4.32it/s] Loading 0: 17%|█▋ | 49/291 [00:12<01:13, 3.28it/s] Loading 0: 17%|█▋ | 50/291 [00:13<01:32, 2.59it/s] Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.37it/s] Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.60it/s] Loading 0: 19%|█▉ | 55/291 [00:13<00:45, 5.20it/s] Loading 0: 20%|█▉ | 57/291 [00:14<00:54, 4.33it/s] Loading 0: 20%|█▉ | 58/291 [00:15<01:11, 3.26it/s] Loading 0: 20%|██ | 59/291 [00:15<01:30, 2.56it/s] Loading 0: 21%|██▏ | 62/291 [00:15<00:52, 4.40it/s] Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.64it/s] Loading 0: 23%|██▎ | 66/291 [00:16<00:49, 4.54it/s] Loading 0: 23%|██▎ | 67/291 [00:17<01:03, 3.52it/s] Loading 0: 23%|██▎ | 68/291 [00:18<01:19, 2.80it/s] Loading 0: 24%|██▍ | 71/291 [00:18<00:48, 4.53it/s] Loading 0: 25%|██▍ | 72/291 [00:18<00:46, 4.74it/s] Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.31it/s] Loading 0: 26%|██▌ | 75/291 [00:19<00:48, 4.43it/s] Loading 0: 26%|██▌ | 76/291 [00:19<01:04, 3.34it/s] Loading 0: 26%|██▋ | 77/291 [00:20<01:21, 2.62it/s] Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.42it/s] Loading 0: 28%|██▊ | 81/291 [00:20<00:45, 4.65it/s] Loading 0: 29%|██▊ | 83/291 [00:20<00:39, 5.25it/s] Loading 0: 29%|██▉ | 84/291 [00:21<00:55, 3.71it/s] Loading 0: 29%|██▉ | 85/291 [00:22<01:10, 2.93it/s] Loading 0: 30%|██▉ | 86/291 [00:22<01:25, 2.39it/s] Loading 0: 31%|███ | 89/291 [00:23<00:48, 4.14it/s] Loading 0: 31%|███ | 90/291 [00:23<00:45, 4.40it/s] Loading 0: 32%|███▏ | 93/291 [00:23<00:44, 4.42it/s] Loading 0: 32%|███▏ | 94/291 [00:24<00:56, 3.46it/s] Loading 0: 33%|███▎ | 95/291 [00:25<01:11, 2.76it/s] Loading 0: 34%|███▎ | 98/291 [00:25<00:43, 4.46it/s] Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.68it/s] Loading 0: 34%|███▍ | 100/291 [00:25<00:36, 5.24it/s] Loading 0: 35%|███▌ | 102/291 [00:26<00:43, 4.39it/s] Loading 0: 35%|███▌ | 103/291 [00:26<00:56, 3.32it/s] Loading 0: 36%|███▌ | 104/291 [00:27<01:10, 2.64it/s] Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.44it/s] Loading 0: 37%|███▋ | 108/291 [00:27<00:39, 4.67it/s] Loading 0: 37%|███▋ | 109/291 [00:27<00:34, 5.22it/s] Loading 0: 38%|███▊ | 111/291 [00:28<00:41, 4.36it/s] Loading 0: 38%|███▊ | 112/291 [00:29<00:54, 3.28it/s] Loading 0: 39%|███▉ | 113/291 [00:29<01:08, 2.60it/s] Loading 0: 40%|███▉ | 116/291 [00:29<00:39, 4.41it/s] Loading 0: 40%|████ | 117/291 [00:30<00:37, 4.65it/s] Loading 0: 41%|████ | 118/291 [00:30<00:32, 5.24it/s] Loading 0: 41%|████ | 120/291 [00:30<00:39, 4.36it/s] Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.29it/s] Loading 0: 42%|████▏ | 122/291 [00:31<01:05, 2.59it/s] Loading 0: 43%|████▎ | 125/291 [00:32<00:37, 4.38it/s] Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.62it/s] Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.22it/s] Loading 0: 44%|████▍ | 129/291 [00:33<00:37, 4.36it/s] Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.29it/s] Loading 0: 45%|████▌ | 131/291 [00:34<01:02, 2.58it/s] Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.37it/s] Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.61it/s] Loading 0: 47%|████▋ | 138/291 [00:35<00:33, 4.54it/s] Loading 0: 48%|████▊ | 139/291 [00:35<00:43, 3.53it/s] Loading 0: 48%|████▊ | 140/291 [00:36<00:53, 2.81it/s] Loading 0: 49%|████▉ | 143/291 [00:36<00:33, 4.48it/s] Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.69it/s] Loading 0: 50%|████▉ | 145/291 [00:37<00:28, 5.16it/s] Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.37it/s] Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.32it/s] Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.62it/s] Loading 0: 52%|█████▏ | 152/291 [00:39<00:31, 4.40it/s] Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.64it/s] Loading 0: 54%|█████▎ | 156/291 [00:39<00:29, 4.55it/s] Loading 0: 54%|█████▍ | 157/291 [00:40<00:37, 3.54it/s] Loading 0: 54%|█████▍ | 158/291 [00:41<00:47, 2.82it/s] Loading 0: 55%|█████▌ | 161/291 [00:41<00:28, 4.55it/s] Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.75it/s] Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.22it/s] Loading 0: 57%|█████▋ | 165/291 [00:42<00:28, 4.39it/s] Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.33it/s] Loading 0: 57%|█████▋ | 167/291 [00:43<00:47, 2.63it/s] Loading 0: 58%|█████▊ | 170/291 [00:43<00:27, 4.48it/s] Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.70it/s] Loading 0: 59%|█████▉ | 172/291 [00:43<00:22, 5.29it/s] Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.57it/s] Loading 0: 60%|██████ | 175/291 [00:44<00:23, 4.86it/s] Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.08it/s] Loading 0: 61%|██████ | 177/291 [00:44<00:19, 5.70it/s] Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.53it/s] Loading 0: 62%|██████▏ | 180/291 [00:46<00:33, 3.35it/s] Loading 0: 62%|██████▏ | 181/291 [00:46<00:41, 2.62it/s] Loading 0: 63%|██████▎ | 184/291 [00:46<00:23, 4.58it/s] Loading 0: 64%|██████▎ | 185/291 [00:47<00:22, 4.81it/s] Loading 0: 64%|██████▍ | 187/291 [00:47<00:18, 5.49it/s] Loading 0: 65%|██████▍ | 188/291 [00:47<00:26, 3.83it/s] Loading 0: 65%|██████▍ | 189/291 [00:48<00:35, 2.89it/s] Loading 0: 66%|██████▌ | 192/291 [00:49<00:26, 3.71it/s] Loading 0: 66%|██████▋ | 193/291 [00:49<00:31, 3.07it/s] Loading 0: 67%|██████▋ | 194/291 [00:50<00:38, 2.54it/s] Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.24it/s] Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.49it/s] Loading 0: 69%|██████▉ | 201/291 [00:51<00:20, 4.49it/s] Loading 0: 69%|██████▉ | 202/291 [00:51<00:25, 3.52it/s] Loading 0: 70%|██████▉ | 203/291 [00:52<00:31, 2.82it/s] Loading 0: 71%|███████ | 206/291 [00:52<00:18, 4.48it/s] Loading 0: 71%|███████ | 207/291 [00:52<00:17, 4.70it/s] Loading 0: 72%|███████▏ | 210/291 [00:53<00:17, 4.60it/s] Loading 0: 73%|███████▎ | 211/291 [00:54<00:22, 3.59it/s] Loading 0: 73%|███████▎ | 212/291 [00:54<00:27, 2.87it/s] Loading 0: 74%|███████▍ | 215/291 [00:54<00:16, 4.58it/s] Loading 0: 74%|███████▍ | 216/291 [00:55<00:15, 4.79it/s] Loading 0: 75%|███████▍ | 217/291 [00:55<00:13, 5.35it/s] Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.49it/s] Loading 0: 76%|███████▌ | 220/291 [00:56<00:20, 3.39it/s] Loading 0: 76%|███████▌ | 221/291 [00:57<00:26, 2.67it/s] Loading 0: 77%|███████▋ | 224/291 [00:57<00:14, 4.50it/s] Loading 0: 77%|███████▋ | 225/291 [00:57<00:13, 4.74it/s] Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.32it/s] Loading 0: 78%|███████▊ | 228/291 [00:58<00:14, 4.44it/s] Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.35it/s] Loading 0: 79%|███████▉ | 230/291 [00:59<00:22, 2.67it/s] Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.53it/s] Loading 0: 80%|████████ | 234/291 [00:59<00:11, 4.78it/s] Loading 0: 81%|████████▏ | 237/291 [01:00<00:11, 4.64it/s] Loading 0: 82%|████████▏ | 238/291 [01:00<00:14, 3.60it/s] Loading 0: 82%|████████▏ | 239/291 [01:01<00:18, 2.86it/s] Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.57it/s] Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.79it/s] Loading 0: 84%|████████▍ | 244/291 [01:01<00:08, 5.32it/s] Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.45it/s] Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.35it/s] Loading 0: 85%|████████▌ | 248/291 [01:03<00:16, 2.66it/s] Loading 0: 86%|████████▋ | 251/291 [01:03<00:08, 4.54it/s] Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.77it/s] Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.35it/s] Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.46it/s] Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.35it/s] Loading 0: 88%|████████▊ | 257/291 [01:05<00:12, 2.66it/s] Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.56it/s] Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.79it/s] Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.39it/s] Loading 0: 91%|█████████ | 264/291 [01:06<00:06, 4.46it/s] Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.37it/s] Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.68it/s] Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.60it/s] Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.82it/s] Loading 0: 94%|█████████▍| 273/291 [01:09<00:03, 4.67it/s] Loading 0: 94%|█████████▍| 274/291 [01:09<00:04, 3.62it/s] Loading 0: 95%|█████████▍| 275/291 [01:10<00:05, 2.87it/s] Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.58it/s] Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.80it/s] Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.98it/s] Loading 0: 97%|█████████▋| 282/291 [01:12<00:02, 3.09it/s] Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 4.10it/s] Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.40it/s] Loading 0: 98%|█████████▊| 286/291 [01:12<00:00, 5.02it/s] Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.18it/s] Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.44it/s]
Job alexdaoud-trainer-bagir-4397-v1-mkmlizer completed after 136.02s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-4397-v1-mkmlizer
Pipeline stage MKMLizer completed in 136.55s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-4397-v1
Waiting for inference service alexdaoud-trainer-bagir-4397-v1 to be ready
Inference service alexdaoud-trainer-bagir-4397-v1 ready after 220.7568531036377s
Pipeline stage MKMLDeployer completed in 221.33s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.672515392303467s
Received healthy response to inference request in 3.106135129928589s
Received healthy response to inference request in 2.8196041584014893s
Received healthy response to inference request in 3.248873472213745s
Received healthy response to inference request in 3.3144679069519043s
5 requests
0 failed requests
5th percentile: 2.876910352706909
10th percentile: 2.934216547012329
20th percentile: 3.048828935623169
30th percentile: 3.13468279838562
40th percentile: 3.191778135299683
50th percentile: 3.248873472213745
60th percentile: 3.2751112461090086
70th percentile: 3.3013490200042725
80th percentile: 3.386077404022217
90th percentile: 3.529296398162842
95th percentile: 3.6009058952331543
99th percentile: 3.658193492889404
mean time: 3.232319211959839
Pipeline stage StressChecker completed in 17.56s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.80s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.20s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_4397_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-4397-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-4397-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-4397-v1-profiler ready after 220.50369429588318s
Pipeline stage MKMLProfilerDeployer completed in 220.86s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplo842qd:/code/chaiverse_profiler_1734381120 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplo842qd --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734381120 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734381120/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplo842qd:/code/chaiverse_profiler_1734383888 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplo842qd:/code/chaiverse_profiler_1734383889 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplo842qd --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734383889 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734383889/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4397-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-4397-v1-profiler
Service alexdaoud-trainer-bagir-4397-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.46s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4397-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.40s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-4397-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-4397-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-4397-v1-profiler ready after 40.15543556213379s
Pipeline stage MKMLProfilerDeployer completed in 40.47s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplojtbbp:/code/chaiverse_profiler_1734384576 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplojtbbp --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734384576 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734384576/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplojtbbp:/code/chaiverse_profiler_1734387374 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplojtbbp:/code/chaiverse_profiler_1734387375 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplojtbbp --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734387375 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734387375/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4397-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-4397-v1-profiler
Service alexdaoud-trainer-bagir-4397-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.35s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4397-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.65s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-4397-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-4397-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-4397-v1-profiler ready after 160.37391114234924s
Pipeline stage MKMLProfilerDeployer completed in 160.71s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplohbqqp:/code/chaiverse_profiler_1734388316 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplohbqqp --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734388316 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734388316/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplohbqqp:/code/chaiverse_profiler_1734391101 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplohbqqp:/code/chaiverse_profiler_1734391102 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bafbca33cb6a988654ee371a773e23c64c-deplohbqqp --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734391102 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734391102/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4397-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-4397-v1-profiler
Service alexdaoud-trainer-bagir-4397-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.40s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_4397_v1 status is now inactive due to auto deactivation removed underperforming models