developer_uid: chai_backend_admin
submission_id: alexdaoud-trainer-bagir-_4198_v1
model_name: alexdaoud-trainer-bagir-_4198_v1
model_group: alexdaoud/trainer_bagir_
status: inactive
timestamp: 2024-12-16T15:50:16+00:00
num_battles: 27089
num_wins: 13727
celo_rating: 1267.0
family_friendly_score: 0.5786
family_friendly_standard_error: 0.006983151723971061
submission_type: basic
model_repo: alexdaoud/trainer_bagir_2024-12-11-checkpoint-63
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 256
max_output_tokens: 1
display_name: alexdaoud-trainer-bagir-_4198_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: alexdaoud/trainer_bagir_2024-12-11-checkpoint-63
model_size: 8B
ranking_group: single
us_pacific_date: 2024-12-16
win_ratio: 0.5067370519399018
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 256, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-4198-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-4198-v1-mkmlizer to finish
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-4198-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-4198-v1-mkmlizer: Downloaded to shared memory in 32.484s
alexdaoud-trainer-bagir-4198-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpsx0b46v_, device:0
alexdaoud-trainer-bagir-4198-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-4198-v1-mkmlizer: quantized model in 85.176s
alexdaoud-trainer-bagir-4198-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-63 in 117.661s
alexdaoud-trainer-bagir-4198-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-4198-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-4198-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4198-v1
alexdaoud-trainer-bagir-4198-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4198-v1/config.json
alexdaoud-trainer-bagir-4198-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4198-v1/special_tokens_map.json
alexdaoud-trainer-bagir-4198-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4198-v1/tokenizer_config.json
alexdaoud-trainer-bagir-4198-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4198-v1/tokenizer.json
alexdaoud-trainer-bagir-4198-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-4198-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-4198-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 1%| | 3/291 [00:00<00:55, 5.15it/s] Loading 0: 1%|▏ | 4/291 [00:01<01:31, 3.15it/s] Loading 0: 2%|▏ | 5/291 [00:01<02:00, 2.38it/s] Loading 0: 3%|▎ | 8/291 [00:02<01:02, 4.53it/s] Loading 0: 3%|▎ | 9/291 [00:02<01:01, 4.57it/s] Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.10it/s] Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.27it/s] Loading 0: 4%|▍ | 13/291 [00:03<01:26, 3.22it/s] Loading 0: 5%|▍ | 14/291 [00:04<01:49, 2.54it/s] Loading 0: 6%|▌ | 17/291 [00:04<01:02, 4.37it/s] Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.61it/s] Loading 0: 7%|▋ | 19/291 [00:04<00:52, 5.18it/s] Loading 0: 7%|▋ | 21/291 [00:05<01:02, 4.35it/s] Loading 0: 8%|▊ | 22/291 [00:05<01:21, 3.29it/s] Loading 0: 8%|▊ | 23/291 [00:06<01:44, 2.57it/s] Loading 0: 9%|▉ | 26/291 [00:06<01:01, 4.30it/s] Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.55it/s] Loading 0: 10%|▉ | 28/291 [00:06<00:51, 5.14it/s] Loading 0: 10%|█ | 30/291 [00:07<01:00, 4.34it/s] Loading 0: 11%|█ | 31/291 [00:08<01:19, 3.29it/s] Loading 0: 11%|█ | 32/291 [00:08<01:40, 2.57it/s] Loading 0: 12%|█▏ | 35/291 [00:08<00:58, 4.38it/s] Loading 0: 12%|█▏ | 36/291 [00:09<00:55, 4.62it/s] Loading 0: 13%|█▎ | 37/291 [00:09<00:48, 5.21it/s] Loading 0: 13%|█▎ | 39/291 [00:09<00:57, 4.37it/s] Loading 0: 14%|█▎ | 40/291 [00:10<01:15, 3.31it/s] Loading 0: 14%|█▍ | 41/291 [00:11<01:36, 2.60it/s] Loading 0: 15%|█▌ | 44/291 [00:11<00:55, 4.42it/s] Loading 0: 15%|█▌ | 45/291 [00:11<00:52, 4.66it/s] Loading 0: 16%|█▌ | 46/291 [00:11<00:46, 5.26it/s] Loading 0: 16%|█▋ | 48/291 [00:12<00:55, 4.40it/s] Loading 0: 17%|█▋ | 49/291 [00:12<01:13, 3.31it/s] Loading 0: 17%|█▋ | 50/291 [00:13<01:32, 2.61it/s] Loading 0: 18%|█▊ | 53/291 [00:13<00:53, 4.42it/s] Loading 0: 19%|█▊ | 54/291 [00:13<00:50, 4.67it/s] Loading 0: 19%|█▉ | 55/291 [00:13<00:46, 5.11it/s] Loading 0: 20%|█▉ | 57/291 [00:14<00:53, 4.34it/s] Loading 0: 20%|█▉ | 58/291 [00:14<01:10, 3.29it/s] Loading 0: 20%|██ | 59/291 [00:15<01:29, 2.60it/s] Loading 0: 21%|██▏ | 62/291 [00:15<00:52, 4.40it/s] Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.64it/s] Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.25it/s] Loading 0: 23%|██▎ | 66/291 [00:16<00:51, 4.40it/s] Loading 0: 23%|██▎ | 67/291 [00:17<01:07, 3.31it/s] Loading 0: 23%|██▎ | 68/291 [00:17<01:25, 2.60it/s] Loading 0: 24%|██▍ | 71/291 [00:18<00:49, 4.47it/s] Loading 0: 25%|██▍ | 72/291 [00:18<00:46, 4.70it/s] Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.31it/s] Loading 0: 26%|██▌ | 75/291 [00:18<00:48, 4.42it/s] Loading 0: 26%|██▌ | 76/291 [00:19<01:04, 3.32it/s] Loading 0: 26%|██▋ | 77/291 [00:20<01:21, 2.62it/s] Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.44it/s] Loading 0: 28%|██▊ | 81/291 [00:20<00:44, 4.67it/s] Loading 0: 29%|██▊ | 83/291 [00:20<00:38, 5.35it/s] Loading 0: 29%|██▉ | 84/291 [00:21<00:54, 3.77it/s] Loading 0: 29%|██▉ | 85/291 [00:21<01:08, 2.99it/s] Loading 0: 30%|██▉ | 86/291 [00:22<01:24, 2.44it/s] Loading 0: 31%|███ | 89/291 [00:22<00:47, 4.24it/s] Loading 0: 31%|███ | 90/291 [00:22<00:44, 4.51it/s] Loading 0: 32%|███▏ | 93/291 [00:23<00:44, 4.49it/s] Loading 0: 32%|███▏ | 94/291 [00:24<00:56, 3.50it/s] Loading 0: 33%|███▎ | 95/291 [00:24<01:10, 2.79it/s] Loading 0: 34%|███▎ | 98/291 [00:25<00:43, 4.47it/s] Loading 0: 34%|███▍ | 99/291 [00:25<00:40, 4.70it/s] Loading 0: 35%|███▌ | 102/291 [00:25<00:41, 4.59it/s] Loading 0: 35%|███▌ | 103/291 [00:26<00:52, 3.58it/s] Loading 0: 36%|███▌ | 104/291 [00:27<01:05, 2.84it/s] Loading 0: 37%|███▋ | 107/291 [00:27<00:40, 4.49it/s] Loading 0: 37%|███▋ | 108/291 [00:27<00:38, 4.71it/s] Loading 0: 37%|███▋ | 109/291 [00:27<00:34, 5.25it/s] Loading 0: 38%|███▊ | 111/291 [00:28<00:40, 4.42it/s] Loading 0: 38%|███▊ | 112/291 [00:28<00:53, 3.35it/s] Loading 0: 39%|███▉ | 113/291 [00:29<01:07, 2.63it/s] Loading 0: 40%|███▉ | 116/291 [00:29<00:39, 4.47it/s] Loading 0: 40%|████ | 117/291 [00:29<00:37, 4.69it/s] Loading 0: 41%|████ | 118/291 [00:29<00:32, 5.26it/s] Loading 0: 41%|████ | 120/291 [00:30<00:38, 4.40it/s] Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.32it/s] Loading 0: 42%|████▏ | 122/291 [00:31<01:04, 2.63it/s] Loading 0: 43%|████▎ | 125/291 [00:31<00:37, 4.45it/s] Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.69it/s] Loading 0: 44%|████▎ | 127/291 [00:32<00:30, 5.30it/s] Loading 0: 44%|████▍ | 129/291 [00:32<00:36, 4.41it/s] Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.33it/s] Loading 0: 45%|████▌ | 131/291 [00:33<01:00, 2.63it/s] Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.46it/s] Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.70it/s] Loading 0: 47%|████▋ | 138/291 [00:34<00:33, 4.59it/s] Loading 0: 48%|████▊ | 139/291 [00:35<00:42, 3.57it/s] Loading 0: 48%|████▊ | 140/291 [00:36<00:53, 2.81it/s] Loading 0: 49%|████▉ | 143/291 [00:36<00:32, 4.49it/s] Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.71it/s] Loading 0: 50%|████▉ | 145/291 [00:36<00:28, 5.18it/s] Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.39it/s] Loading 0: 51%|█████ | 148/291 [00:37<00:42, 3.33it/s] Loading 0: 51%|█████ | 149/291 [00:38<00:53, 2.65it/s] Loading 0: 52%|█████▏ | 152/291 [00:38<00:30, 4.50it/s] Loading 0: 53%|█████▎ | 153/291 [00:38<00:29, 4.74it/s] Loading 0: 54%|█████▎ | 156/291 [00:39<00:29, 4.58it/s] Loading 0: 54%|█████▍ | 157/291 [00:40<00:37, 3.56it/s] Loading 0: 54%|█████▍ | 158/291 [00:40<00:47, 2.80it/s] Loading 0: 55%|█████▌ | 161/291 [00:40<00:29, 4.48it/s] Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.70it/s] Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.23it/s] Loading 0: 57%|█████▋ | 165/291 [00:41<00:28, 4.41it/s] Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.35it/s] Loading 0: 57%|█████▋ | 167/291 [00:43<00:46, 2.66it/s] Loading 0: 58%|█████▊ | 170/291 [00:43<00:26, 4.52it/s] Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.75it/s] Loading 0: 59%|█████▉ | 172/291 [00:43<00:22, 5.34it/s] Loading 0: 59%|█████▉ | 173/291 [00:44<00:32, 3.61it/s] Loading 0: 60%|██████ | 175/291 [00:44<00:23, 4.86it/s] Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.09it/s] Loading 0: 61%|██████ | 177/291 [00:44<00:19, 5.77it/s] Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.55it/s] Loading 0: 62%|██████▏ | 180/291 [00:45<00:33, 3.34it/s] Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.61it/s] Loading 0: 63%|██████▎ | 184/291 [00:46<00:23, 4.51it/s] Loading 0: 64%|██████▎ | 185/291 [00:46<00:22, 4.75it/s] Loading 0: 64%|██████▍ | 187/291 [00:46<00:19, 5.46it/s] Loading 0: 65%|██████▍ | 188/291 [00:47<00:26, 3.82it/s] Loading 0: 65%|██████▍ | 189/291 [00:48<00:35, 2.88it/s] Loading 0: 66%|██████▌ | 192/291 [00:48<00:26, 3.70it/s] Loading 0: 66%|██████▋ | 193/291 [00:49<00:32, 3.06it/s] Loading 0: 67%|██████▋ | 194/291 [00:49<00:38, 2.53it/s] Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.17it/s] Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.43it/s] Loading 0: 68%|██████▊ | 199/291 [00:50<00:18, 5.02it/s] Loading 0: 69%|██████▉ | 201/291 [00:50<00:20, 4.32it/s] Loading 0: 69%|██████▉ | 202/291 [00:51<00:26, 3.31it/s] Loading 0: 70%|██████▉ | 203/291 [00:52<00:33, 2.64it/s] Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.46it/s] Loading 0: 71%|███████ | 207/291 [00:52<00:17, 4.70it/s] Loading 0: 71%|███████▏ | 208/291 [00:52<00:15, 5.27it/s] Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.42it/s] Loading 0: 73%|███████▎ | 211/291 [00:53<00:23, 3.34it/s] Loading 0: 73%|███████▎ | 212/291 [00:54<00:30, 2.63it/s] Loading 0: 74%|███████▍ | 215/291 [00:54<00:16, 4.52it/s] Loading 0: 74%|███████▍ | 216/291 [00:54<00:15, 4.83it/s] Loading 0: 75%|███████▍ | 217/291 [00:54<00:13, 5.43it/s] Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.50it/s] Loading 0: 76%|███████▌ | 220/291 [00:55<00:20, 3.39it/s] Loading 0: 76%|███████▌ | 221/291 [00:56<00:26, 2.68it/s] Loading 0: 77%|███████▋ | 224/291 [00:56<00:14, 4.56it/s] Loading 0: 77%|███████▋ | 225/291 [00:56<00:13, 4.77it/s] Loading 0: 78%|███████▊ | 228/291 [00:57<00:13, 4.63it/s] Loading 0: 79%|███████▊ | 229/291 [00:58<00:17, 3.59it/s] Loading 0: 79%|███████▉ | 230/291 [00:58<00:21, 2.85it/s] Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.62it/s] Loading 0: 80%|████████ | 234/291 [00:59<00:11, 4.90it/s] Loading 0: 81%|████████ | 235/291 [00:59<00:10, 5.45it/s] Loading 0: 81%|████████▏ | 237/291 [00:59<00:11, 4.52it/s] Loading 0: 82%|████████▏ | 238/291 [01:00<00:15, 3.40it/s] Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.69it/s] Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.54it/s] Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.78it/s] Loading 0: 84%|████████▍ | 245/291 [01:01<00:07, 6.54it/s] Loading 0: 85%|████████▍ | 247/291 [01:02<00:12, 3.42it/s] Loading 0: 85%|████████▌ | 248/291 [01:03<00:15, 2.79it/s] Loading 0: 86%|████████▋ | 251/291 [01:03<00:09, 4.42it/s] Loading 0: 87%|████████▋ | 252/291 [01:03<00:08, 4.64it/s] Loading 0: 87%|████████▋ | 253/291 [01:03<00:07, 5.16it/s] Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.40it/s] Loading 0: 88%|████████▊ | 256/291 [01:04<00:10, 3.37it/s] Loading 0: 88%|████████▊ | 257/291 [01:05<00:12, 2.68it/s] Loading 0: 89%|████████▉ | 260/291 [01:05<00:06, 4.56it/s] Loading 0: 90%|████████▉ | 261/291 [01:05<00:06, 4.79it/s] Loading 0: 90%|█████████ | 263/291 [01:06<00:04, 6.53it/s] Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.42it/s] Loading 0: 91%|█████████▏| 266/291 [01:07<00:08, 2.78it/s] Loading 0: 92%|█████████▏| 269/291 [01:07<00:05, 4.39it/s] Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.63it/s] Loading 0: 93%|█████████▎| 271/291 [01:08<00:03, 5.18it/s] Loading 0: 94%|█████████▍| 273/291 [01:08<00:04, 4.40it/s] Loading 0: 94%|█████████▍| 274/291 [01:09<00:05, 3.35it/s] Loading 0: 95%|█████████▍| 275/291 [01:10<00:05, 2.67it/s] Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.48it/s] Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.72it/s] Loading 0: 96%|█████████▌| 280/291 [01:10<00:02, 5.31it/s] Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.57it/s] Loading 0: 97%|█████████▋| 282/291 [01:11<00:03, 2.71it/s] Loading 0: 98%|█████████▊| 284/291 [01:11<00:01, 3.89it/s] Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.24it/s] Loading 0: 98%|█████████▊| 286/291 [01:12<00:01, 4.90it/s] Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.09it/s] Loading 0: 99%|█████████▉| 288/291 [01:12<00:00, 3.35it/s]
Job alexdaoud-trainer-bagir-4198-v1-mkmlizer completed after 146.07s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-4198-v1-mkmlizer
Pipeline stage MKMLizer completed in 146.58s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-4198-v1
Waiting for inference service alexdaoud-trainer-bagir-4198-v1 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service alexdaoud-trainer-bagir-4198-v1 ready after 211.5515329837799s
Pipeline stage MKMLDeployer completed in 212.07s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 4.485709190368652s
Received healthy response to inference request in 3.6045846939086914s
Received healthy response to inference request in 10.698078632354736s
Received healthy response to inference request in 3.6589512825012207s
Received healthy response to inference request in 4.000499963760376s
5 requests
0 failed requests
5th percentile: 3.6154580116271973
10th percentile: 3.626331329345703
20th percentile: 3.648077964782715
30th percentile: 3.727261018753052
40th percentile: 3.863880491256714
50th percentile: 4.000499963760376
60th percentile: 4.1945836544036865
70th percentile: 4.388667345046997
80th percentile: 5.72818307876587
90th percentile: 8.213130855560303
95th percentile: 9.455604743957519
99th percentile: 10.449583854675293
mean time: 5.289564752578736
%s, retrying in %s seconds...
Received healthy response to inference request in 5.6286866664886475s
Received healthy response to inference request in 3.4191811084747314s
Received healthy response to inference request in 3.196620464324951s
Received healthy response to inference request in 6.271179437637329s
Received healthy response to inference request in 2.543217420578003s
5 requests
0 failed requests
5th percentile: 2.6738980293273924
10th percentile: 2.8045786380767823
20th percentile: 3.0659398555755617
30th percentile: 3.2411325931549073
40th percentile: 3.330156850814819
50th percentile: 3.4191811084747314
60th percentile: 4.302983331680298
70th percentile: 5.186785554885864
80th percentile: 5.757185220718384
90th percentile: 6.0141823291778564
95th percentile: 6.142680883407593
99th percentile: 6.245479726791382
mean time: 4.211777019500732
%s, retrying in %s seconds...
Received healthy response to inference request in 2.962934732437134s
Received healthy response to inference request in 3.496283531188965s
Received healthy response to inference request in 2.5968778133392334s
Received healthy response to inference request in 3.1428122520446777s
Received healthy response to inference request in 3.4014530181884766s
5 requests
0 failed requests
5th percentile: 2.6700891971588137
10th percentile: 2.7433005809783935
20th percentile: 2.8897233486175535
30th percentile: 2.9989102363586424
40th percentile: 3.07086124420166
50th percentile: 3.1428122520446777
60th percentile: 3.246268558502197
70th percentile: 3.349724864959717
80th percentile: 3.420419120788574
90th percentile: 3.4583513259887697
95th percentile: 3.4773174285888673
99th percentile: 3.4924903106689453
mean time: 3.120072269439697
Pipeline stage StressChecker completed in 67.17s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.56s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.82s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_4198_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-4198-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-4198-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-4198-v1-profiler ready after 220.52997589111328s
Pipeline stage MKMLProfilerDeployer completed in 220.93s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs:/code/chaiverse_profiler_1734364914 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734364914 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734364914/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs:/code/chaiverse_profiler_1734367712 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734367712 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734367712/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4198-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-4198-v1-profiler
Service alexdaoud-trainer-bagir-4198-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.40s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4198-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-4198-v1-profiler
Service alexdaoud-trainer-bagir-4198-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.88s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-4198-v1-profiler
Ignoring service alexdaoud-trainer-bagir-4198-v1-profiler already deployed
Waiting for inference service alexdaoud-trainer-bagir-4198-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-4198-v1-profiler ready after 10.06730031967163s
Pipeline stage MKMLProfilerDeployer completed in 10.44s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs:/code/chaiverse_profiler_1734368337 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734368337 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734368337/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs:/code/chaiverse_profiler_1734368455 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo5khjs:/code/chaiverse_profiler_1734368456 --namespace tenant-chaiml-guanaco
clean up pipeline due to error=ISVCScriptError('Command failed with error: Defaulted container "kserve-container" out of: kserve-container, queue-proxy\nerror: unable to upgrade connection: container not found ("kserve-container")\n, output: ')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4198-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.41s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4198-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.49s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-4198-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-4198-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-4198-v1-profiler ready after 220.4924716949463s
Pipeline stage MKMLProfilerDeployer completed in 220.87s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo7m4p7:/code/chaiverse_profiler_1734368714 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo7m4p7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734368714 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734368714/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo7m4p7:/code/chaiverse_profiler_1734371506 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bad32d2efedc74a0e77c214f85e1a023b1-deplo7m4p7 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734371506 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734371506/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-4198-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-4198-v1-profiler
Service alexdaoud-trainer-bagir-4198-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.39s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_4198_v1 status is now inactive due to auto deactivation removed underperforming models