Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-3347-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-3347-v1-mkmlizer to finish
alexdaoud-trainer-bagir-3347-v1-mkmlizer: Downloaded to shared memory in 32.060s
alexdaoud-trainer-bagir-3347-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpyi257qtv, device:0
alexdaoud-trainer-bagir-3347-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-3347-v1-mkmlizer: quantized model in 85.121s
alexdaoud-trainer-bagir-3347-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-98 in 117.182s
alexdaoud-trainer-bagir-3347-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-3347-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-3347-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-3347-v1
alexdaoud-trainer-bagir-3347-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-3347-v1/config.json
alexdaoud-trainer-bagir-3347-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-3347-v1/special_tokens_map.json
alexdaoud-trainer-bagir-3347-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-3347-v1/tokenizer_config.json
alexdaoud-trainer-bagir-3347-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-3347-v1/tokenizer.json
alexdaoud-trainer-bagir-3347-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-3347-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-3347-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:00<00:56, 5.08it/s]
Loading 0: 1%|▏ | 4/291 [00:01<01:33, 3.07it/s]
Loading 0: 2%|▏ | 5/291 [00:01<02:04, 2.30it/s]
Loading 0: 3%|▎ | 8/291 [00:02<01:04, 4.40it/s]
Loading 0: 3%|▎ | 9/291 [00:02<01:03, 4.47it/s]
Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.10it/s]
Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.26it/s]
Loading 0: 4%|▍ | 13/291 [00:03<01:26, 3.20it/s]
Loading 0: 5%|▍ | 14/291 [00:04<01:50, 2.50it/s]
Loading 0: 6%|▌ | 17/291 [00:04<01:03, 4.30it/s]
Loading 0: 6%|▌ | 18/291 [00:04<01:00, 4.54it/s]
Loading 0: 7%|▋ | 19/291 [00:04<00:53, 5.05it/s]
Loading 0: 7%|▋ | 21/291 [00:05<01:03, 4.28it/s]
Loading 0: 8%|▊ | 22/291 [00:05<01:22, 3.24it/s]
Loading 0: 8%|▊ | 23/291 [00:06<01:44, 2.56it/s]
Loading 0: 9%|▉ | 26/291 [00:06<01:00, 4.37it/s]
Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.61it/s]
Loading 0: 10%|█ | 30/291 [00:07<00:57, 4.50it/s]
Loading 0: 11%|█ | 31/291 [00:08<01:14, 3.50it/s]
Loading 0: 11%|█ | 32/291 [00:08<01:34, 2.75it/s]
Loading 0: 12%|█▏ | 35/291 [00:09<00:58, 4.41it/s]
Loading 0: 12%|█▏ | 36/291 [00:09<00:54, 4.64it/s]
Loading 0: 13%|█▎ | 37/291 [00:09<00:48, 5.20it/s]
Loading 0: 13%|█▎ | 39/291 [00:09<00:57, 4.38it/s]
Loading 0: 14%|█▎ | 40/291 [00:10<01:16, 3.29it/s]
Loading 0: 14%|█▍ | 41/291 [00:11<01:36, 2.59it/s]
Loading 0: 15%|█▌ | 44/291 [00:11<00:56, 4.35it/s]
Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.58it/s]
Loading 0: 16%|█▌ | 46/291 [00:11<00:47, 5.16it/s]
Loading 0: 16%|█▋ | 48/291 [00:12<00:56, 4.31it/s]
Loading 0: 17%|█▋ | 49/291 [00:12<01:14, 3.27it/s]
Loading 0: 17%|█▋ | 50/291 [00:13<01:33, 2.58it/s]
Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.37it/s]
Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.62it/s]
Loading 0: 19%|█▉ | 55/291 [00:13<00:45, 5.21it/s]
Loading 0: 20%|█▉ | 57/291 [00:14<00:53, 4.36it/s]
Loading 0: 20%|█▉ | 58/291 [00:15<01:10, 3.30it/s]
Loading 0: 20%|██ | 59/291 [00:15<01:29, 2.60it/s]
Loading 0: 21%|██▏ | 62/291 [00:15<00:51, 4.41it/s]
Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.64it/s]
Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.18it/s]
Loading 0: 23%|██▎ | 66/291 [00:16<00:51, 4.33it/s]
Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.29it/s]
Loading 0: 23%|██▎ | 68/291 [00:18<01:25, 2.60it/s]
Loading 0: 24%|██▍ | 71/291 [00:18<00:49, 4.41it/s]
Loading 0: 25%|██▍ | 72/291 [00:18<00:47, 4.65it/s]
Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.21it/s]
Loading 0: 26%|██▌ | 75/291 [00:19<00:49, 4.34it/s]
Loading 0: 26%|██▌ | 76/291 [00:19<01:05, 3.29it/s]
Loading 0: 26%|██▋ | 77/291 [00:20<01:23, 2.57it/s]
Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.42it/s]
Loading 0: 28%|██▊ | 81/291 [00:20<00:45, 4.65it/s]
Loading 0: 28%|██▊ | 82/291 [00:20<00:39, 5.25it/s]
Loading 0: 29%|██▊ | 83/291 [00:21<00:39, 5.25it/s]
Loading 0: 29%|██▉ | 84/291 [00:21<00:59, 3.47it/s]
Loading 0: 29%|██▉ | 85/291 [00:22<01:15, 2.74it/s]
Loading 0: 30%|██▉ | 86/291 [00:22<01:30, 2.26it/s]
Loading 0: 31%|███ | 89/291 [00:23<00:48, 4.21it/s]
Loading 0: 31%|███ | 90/291 [00:23<00:44, 4.48it/s]
Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.11it/s]
Loading 0: 32%|███▏ | 93/291 [00:23<00:46, 4.29it/s]
Loading 0: 32%|███▏ | 94/291 [00:24<01:00, 3.25it/s]
Loading 0: 33%|███▎ | 95/291 [00:25<01:17, 2.53it/s]
Loading 0: 34%|███▎ | 98/291 [00:25<00:44, 4.34it/s]
Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.59it/s]
Loading 0: 34%|███▍ | 100/291 [00:25<00:36, 5.19it/s]
Loading 0: 35%|███▌ | 102/291 [00:26<00:43, 4.35it/s]
Loading 0: 35%|███▌ | 103/291 [00:26<00:57, 3.28it/s]
Loading 0: 36%|███▌ | 104/291 [00:27<01:11, 2.62it/s]
Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.46it/s]
Loading 0: 37%|███▋ | 108/291 [00:27<00:39, 4.69it/s]
Loading 0: 37%|███▋ | 109/291 [00:27<00:34, 5.27it/s]
Loading 0: 38%|███▊ | 111/291 [00:28<00:40, 4.40it/s]
Loading 0: 38%|███▊ | 112/291 [00:29<00:54, 3.27it/s]
Loading 0: 39%|███▉ | 113/291 [00:29<01:08, 2.60it/s]
Loading 0: 40%|███▉ | 116/291 [00:29<00:39, 4.47it/s]
Loading 0: 40%|████ | 117/291 [00:30<00:36, 4.71it/s]
Loading 0: 41%|████ | 118/291 [00:30<00:32, 5.31it/s]
Loading 0: 41%|████ | 120/291 [00:30<00:38, 4.41it/s]
Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.30it/s]
Loading 0: 42%|████▏ | 122/291 [00:31<01:05, 2.60it/s]
Loading 0: 43%|████▎ | 125/291 [00:32<00:37, 4.46it/s]
Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.70it/s]
Loading 0: 44%|████▎ | 127/291 [00:32<00:30, 5.29it/s]
Loading 0: 44%|████▍ | 129/291 [00:32<00:36, 4.41it/s]
Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.32it/s]
Loading 0: 45%|████▌ | 131/291 [00:34<01:00, 2.64it/s]
Loading 0: 46%|████▌ | 134/291 [00:34<00:34, 4.49it/s]
Loading 0: 46%|████▋ | 135/291 [00:34<00:32, 4.74it/s]
Loading 0: 47%|████▋ | 136/291 [00:34<00:29, 5.33it/s]
Loading 0: 47%|████▋ | 138/291 [00:35<00:34, 4.42it/s]
Loading 0: 48%|████▊ | 139/291 [00:35<00:45, 3.32it/s]
Loading 0: 48%|████▊ | 140/291 [00:36<00:57, 2.61it/s]
Loading 0: 49%|████▉ | 143/291 [00:36<00:32, 4.49it/s]
Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.73it/s]
Loading 0: 50%|████▉ | 145/291 [00:36<00:27, 5.30it/s]
Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.42it/s]
Loading 0: 51%|█████ | 148/291 [00:38<00:42, 3.33it/s]
Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.63it/s]
Loading 0: 52%|█████▏ | 152/291 [00:38<00:30, 4.51it/s]
Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.74it/s]
Loading 0: 53%|█████▎ | 154/291 [00:39<00:25, 5.30it/s]
Loading 0: 54%|█████▎ | 156/291 [00:39<00:30, 4.40it/s]
Loading 0: 54%|█████▍ | 157/291 [00:40<00:40, 3.31it/s]
Loading 0: 54%|█████▍ | 158/291 [00:40<00:51, 2.60it/s]
Loading 0: 55%|█████▌ | 161/291 [00:41<00:29, 4.42it/s]
Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.66it/s]
Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.24it/s]
Loading 0: 57%|█████▋ | 165/291 [00:42<00:28, 4.37it/s]
Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.30it/s]
Loading 0: 57%|█████▋ | 167/291 [00:43<00:48, 2.58it/s]
Loading 0: 58%|█████▊ | 170/291 [00:43<00:27, 4.43it/s]
Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.68it/s]
Loading 0: 59%|█████▉ | 172/291 [00:43<00:22, 5.25it/s]
Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.56it/s]
Loading 0: 60%|██████ | 175/291 [00:44<00:23, 4.89it/s]
Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.12it/s]
Loading 0: 61%|██████ | 177/291 [00:44<00:19, 5.79it/s]
Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.56it/s]
Loading 0: 62%|██████▏ | 180/291 [00:45<00:33, 3.34it/s]
Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.61it/s]
Loading 0: 63%|██████▎ | 184/291 [00:46<00:23, 4.57it/s]
Loading 0: 64%|██████▎ | 185/291 [00:46<00:21, 4.88it/s]
Loading 0: 64%|██████▍ | 186/291 [00:46<00:19, 5.40it/s]
Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.33it/s]
Loading 0: 65%|██████▍ | 188/291 [00:47<00:29, 3.51it/s]
Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.63it/s]
Loading 0: 66%|██████▌ | 192/291 [00:48<00:27, 3.58it/s]
Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.96it/s]
Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.47it/s]
Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.18it/s]
Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.45it/s]
Loading 0: 69%|██████▉ | 201/291 [00:51<00:20, 4.46it/s]
Loading 0: 69%|██████▉ | 202/291 [00:51<00:25, 3.52it/s]
Loading 0: 70%|██████▉ | 203/291 [00:52<00:31, 2.80it/s]
Loading 0: 71%|███████ | 206/291 [00:52<00:18, 4.49it/s]
Loading 0: 71%|███████ | 207/291 [00:52<00:17, 4.71it/s]
Loading 0: 71%|███████▏ | 208/291 [00:52<00:15, 5.27it/s]
Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.44it/s]
Loading 0: 73%|███████▎ | 211/291 [00:54<00:23, 3.35it/s]
Loading 0: 73%|███████▎ | 212/291 [00:54<00:29, 2.65it/s]
Loading 0: 74%|███████▍ | 215/291 [00:54<00:17, 4.46it/s]
Loading 0: 74%|███████▍ | 216/291 [00:55<00:15, 4.70it/s]
Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.28it/s]
Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.39it/s]
Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.32it/s]
Loading 0: 76%|███████▌ | 221/291 [00:56<00:26, 2.64it/s]
Loading 0: 77%|███████▋ | 224/291 [00:57<00:14, 4.48it/s]
Loading 0: 77%|███████▋ | 225/291 [00:57<00:13, 4.73it/s]
Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.33it/s]
Loading 0: 78%|███████▊ | 228/291 [00:57<00:14, 4.41it/s]
Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.33it/s]
Loading 0: 79%|███████▉ | 230/291 [00:59<00:23, 2.65it/s]
Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.53it/s]
Loading 0: 80%|████████ | 234/291 [00:59<00:11, 4.76it/s]
Loading 0: 81%|████████ | 235/291 [00:59<00:10, 5.35it/s]
Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.42it/s]
Loading 0: 82%|████████▏ | 238/291 [01:00<00:15, 3.34it/s]
Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.65it/s]
Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.49it/s]
Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.74it/s]
Loading 0: 84%|████████▍ | 244/291 [01:01<00:08, 5.32it/s]
Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.44it/s]
Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.33it/s]
Loading 0: 85%|████████▌ | 248/291 [01:03<00:16, 2.63it/s]
Loading 0: 86%|████████▋ | 251/291 [01:03<00:08, 4.53it/s]
Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.77it/s]
Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.34it/s]
Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.42it/s]
Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.34it/s]
Loading 0: 88%|████████▊ | 257/291 [01:05<00:12, 2.63it/s]
Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.53it/s]
Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.76it/s]
Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.37it/s]
Loading 0: 91%|█████████ | 264/291 [01:06<00:06, 4.46it/s]
Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.35it/s]
Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.64it/s]
Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.54it/s]
Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.78it/s]
Loading 0: 93%|█████████▎| 271/291 [01:08<00:03, 5.38it/s]
Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.45it/s]
Loading 0: 94%|█████████▍| 274/291 [01:09<00:05, 3.36it/s]
Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.65it/s]
Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.52it/s]
Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.76it/s]
Loading 0: 96%|█████████▌| 280/291 [01:10<00:02, 5.36it/s]
Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.61it/s]
Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.73it/s]
Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.99it/s]
Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.34it/s]
Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.18it/s]
Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.62it/s]
Job alexdaoud-trainer-bagir-3347-v1-mkmlizer completed after 144.13s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-3347-v1-mkmlizer
Pipeline stage MKMLizer completed in 144.62s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-3347-v1
Waiting for inference service alexdaoud-trainer-bagir-3347-v1 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service alexdaoud-trainer-bagir-3347-v1 ready after 240.86239385604858s
Pipeline stage MKMLDeployer completed in 241.37s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 4.062701940536499s
Received healthy response to inference request in 2.2101211547851562s
Received healthy response to inference request in 2.775319814682007s
Received healthy response to inference request in 3.416261672973633s
Received healthy response to inference request in 3.310784339904785s
5 requests
0 failed requests
5th percentile: 2.3231608867645264
10th percentile: 2.4362006187438965
20th percentile: 2.6622800827026367
30th percentile: 2.8824127197265623
40th percentile: 3.0965985298156737
50th percentile: 3.310784339904785
60th percentile: 3.352975273132324
70th percentile: 3.395166206359863
80th percentile: 3.545549726486206
90th percentile: 3.8041258335113524
95th percentile: 3.9334138870239257
99th percentile: 4.0368443298339844
mean time: 3.155037784576416
Pipeline stage StressChecker completed in 17.26s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.23s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.14s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_3347_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-3347-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-3347-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-3347-v1-profiler ready after 250.57919454574585s
Pipeline stage MKMLProfilerDeployer completed in 250.94s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploxpdqk:/code/chaiverse_profiler_1734564755 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploxpdqk --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734564755 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734564755/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploxpdqk:/code/chaiverse_profiler_1734567565 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploxpdqk --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734567565 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734567565/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-3347-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-3347-v1-profiler
Service alexdaoud-trainer-bagir-3347-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.55s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-3347-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.70s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-3347-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-3347-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-3347-v1-profiler ready after 190.42466139793396s
Pipeline stage MKMLProfilerDeployer completed in 190.75s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploctgs9:/code/chaiverse_profiler_1734568329 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploctgs9 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734568329 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734568329/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploctgs9:/code/chaiverse_profiler_1734571075 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deploctgs9 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734571075 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734571075/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-3347-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-3347-v1-profiler
Service alexdaoud-trainer-bagir-3347-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.98s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-3347-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.64s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-3347-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-3347-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-3347-v1-profiler ready after 130.29366302490234s
Pipeline stage MKMLProfilerDeployer completed in 130.63s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deplohrg4j:/code/chaiverse_profiler_1734571891 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deplohrg4j --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734571891 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734571891/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deplohrg4j:/code/chaiverse_profiler_1734574676 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deplohrg4j:/code/chaiverse_profiler_1734574676 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-bacfacd11b42fe9c363da126fe9e2bf2d5-deplohrg4j --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734574676 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734574676/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-3347-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-3347-v1-profiler
Service alexdaoud-trainer-bagir-3347-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.80s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_3347_v1 status is now inactive due to auto deactivation removed underperforming models