Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-2931-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-2931-v1-mkmlizer to finish
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2931-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
alexdaoud-trainer-bagir-2931-v1-mkmlizer: Downloaded to shared memory in 32.790s
alexdaoud-trainer-bagir-2931-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpok12yayh, device:0
alexdaoud-trainer-bagir-2931-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-2931-v1-mkmlizer: quantized model in 85.999s
alexdaoud-trainer-bagir-2931-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-83 in 118.790s
alexdaoud-trainer-bagir-2931-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-2931-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-2931-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2931-v1
alexdaoud-trainer-bagir-2931-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2931-v1/config.json
alexdaoud-trainer-bagir-2931-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2931-v1/special_tokens_map.json
alexdaoud-trainer-bagir-2931-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2931-v1/tokenizer_config.json
alexdaoud-trainer-bagir-2931-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2931-v1/tokenizer.json
alexdaoud-trainer-bagir-2931-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2931-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-2931-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:00<00:56, 5.11it/s]
Loading 0: 1%|▏ | 4/291 [00:01<01:31, 3.13it/s]
Loading 0: 2%|▏ | 5/291 [00:01<02:03, 2.32it/s]
Loading 0: 3%|▎ | 8/291 [00:02<01:03, 4.43it/s]
Loading 0: 3%|▎ | 9/291 [00:02<01:02, 4.48it/s]
Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.09it/s]
Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.24it/s]
Loading 0: 4%|▍ | 13/291 [00:03<01:27, 3.19it/s]
Loading 0: 5%|▍ | 14/291 [00:04<01:48, 2.55it/s]
Loading 0: 6%|▌ | 17/291 [00:04<01:02, 4.37it/s]
Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.61it/s]
Loading 0: 7%|▋ | 19/291 [00:04<00:52, 5.21it/s]
Loading 0: 7%|▋ | 21/291 [00:05<01:02, 4.35it/s]
Loading 0: 8%|▊ | 22/291 [00:05<01:22, 3.27it/s]
Loading 0: 8%|▊ | 23/291 [00:06<01:44, 2.56it/s]
Loading 0: 9%|▉ | 26/291 [00:06<01:00, 4.36it/s]
Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.56it/s]
Loading 0: 10%|▉ | 29/291 [00:06<00:41, 6.29it/s]
Loading 0: 11%|█ | 31/291 [00:08<01:18, 3.32it/s]
Loading 0: 11%|█ | 32/291 [00:08<01:36, 2.68it/s]
Loading 0: 12%|█▏ | 35/291 [00:09<01:00, 4.26it/s]
Loading 0: 12%|█▏ | 36/291 [00:09<00:56, 4.50it/s]
Loading 0: 13%|█▎ | 37/291 [00:09<00:50, 5.05it/s]
Loading 0: 13%|█▎ | 39/291 [00:09<00:58, 4.32it/s]
Loading 0: 14%|█▎ | 40/291 [00:10<01:16, 3.29it/s]
Loading 0: 14%|█▍ | 41/291 [00:11<01:36, 2.60it/s]
Loading 0: 15%|█▌ | 44/291 [00:11<00:56, 4.39it/s]
Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.63it/s]
Loading 0: 16%|█▌ | 46/291 [00:11<00:46, 5.23it/s]
Loading 0: 16%|█▋ | 48/291 [00:12<00:55, 4.36it/s]
Loading 0: 17%|█▋ | 49/291 [00:12<01:13, 3.29it/s]
Loading 0: 17%|█▋ | 50/291 [00:13<01:33, 2.57it/s]
Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.36it/s]
Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.60it/s]
Loading 0: 19%|█▉ | 55/291 [00:13<00:46, 5.10it/s]
Loading 0: 20%|█▉ | 57/291 [00:14<00:54, 4.31it/s]
Loading 0: 20%|█▉ | 58/291 [00:15<01:11, 3.27it/s]
Loading 0: 20%|██ | 59/291 [00:15<01:29, 2.59it/s]
Loading 0: 21%|██▏ | 62/291 [00:15<00:52, 4.39it/s]
Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.63it/s]
Loading 0: 22%|██▏ | 64/291 [00:16<00:44, 5.15it/s]
Loading 0: 23%|██▎ | 66/291 [00:16<00:52, 4.32it/s]
Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.27it/s]
Loading 0: 23%|██▎ | 68/291 [00:18<01:25, 2.60it/s]
Loading 0: 24%|██▍ | 71/291 [00:18<00:49, 4.40it/s]
Loading 0: 25%|██▍ | 72/291 [00:18<00:47, 4.65it/s]
Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.25it/s]
Loading 0: 26%|██▌ | 75/291 [00:19<00:49, 4.37it/s]
Loading 0: 26%|██▌ | 76/291 [00:19<01:05, 3.29it/s]
Loading 0: 26%|██▋ | 77/291 [00:20<01:23, 2.57it/s]
Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.42it/s]
Loading 0: 28%|██▊ | 81/291 [00:20<00:45, 4.65it/s]
Loading 0: 28%|██▊ | 82/291 [00:20<00:39, 5.23it/s]
Loading 0: 29%|██▊ | 83/291 [00:20<00:40, 5.16it/s]
Loading 0: 29%|██▉ | 84/291 [00:21<01:00, 3.44it/s]
Loading 0: 29%|██▉ | 85/291 [00:22<01:15, 2.73it/s]
Loading 0: 30%|██▉ | 86/291 [00:22<01:31, 2.25it/s]
Loading 0: 31%|███ | 89/291 [00:22<00:48, 4.18it/s]
Loading 0: 31%|███ | 90/291 [00:23<00:45, 4.47it/s]
Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.08it/s]
Loading 0: 32%|███▏ | 93/291 [00:23<00:46, 4.27it/s]
Loading 0: 32%|███▏ | 94/291 [00:24<01:00, 3.23it/s]
Loading 0: 33%|███▎ | 95/291 [00:25<01:16, 2.56it/s]
Loading 0: 34%|███▎ | 98/291 [00:25<00:43, 4.45it/s]
Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.67it/s]
Loading 0: 34%|███▍ | 100/291 [00:25<00:36, 5.27it/s]
Loading 0: 35%|███▌ | 102/291 [00:26<00:43, 4.39it/s]
Loading 0: 35%|███▌ | 103/291 [00:26<00:56, 3.32it/s]
Loading 0: 36%|███▌ | 104/291 [00:27<01:12, 2.57it/s]
Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.45it/s]
Loading 0: 37%|███▋ | 108/291 [00:27<00:38, 4.69it/s]
Loading 0: 38%|███▊ | 110/291 [00:27<00:28, 6.44it/s]
Loading 0: 38%|███▊ | 112/291 [00:28<00:53, 3.37it/s]
Loading 0: 39%|███▉ | 113/291 [00:29<01:05, 2.74it/s]
Loading 0: 40%|███▉ | 116/291 [00:29<00:39, 4.38it/s]
Loading 0: 40%|████ | 117/291 [00:29<00:37, 4.59it/s]
Loading 0: 41%|████ | 118/291 [00:30<00:34, 5.09it/s]
Loading 0: 41%|████ | 120/291 [00:30<00:39, 4.32it/s]
Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.29it/s]
Loading 0: 42%|████▏ | 122/291 [00:31<01:04, 2.61it/s]
Loading 0: 43%|████▎ | 125/291 [00:32<00:37, 4.40it/s]
Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.64it/s]
Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.23it/s]
Loading 0: 44%|████▍ | 129/291 [00:32<00:37, 4.37it/s]
Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.31it/s]
Loading 0: 45%|████▌ | 131/291 [00:34<01:01, 2.62it/s]
Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.49it/s]
Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.72it/s]
Loading 0: 47%|████▋ | 136/291 [00:34<00:29, 5.26it/s]
Loading 0: 47%|████▋ | 138/291 [00:35<00:34, 4.39it/s]
Loading 0: 48%|████▊ | 139/291 [00:35<00:45, 3.31it/s]
Loading 0: 48%|████▊ | 140/291 [00:36<00:57, 2.63it/s]
Loading 0: 49%|████▉ | 143/291 [00:36<00:33, 4.48it/s]
Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.70it/s]
Loading 0: 50%|████▉ | 145/291 [00:36<00:27, 5.27it/s]
Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.40it/s]
Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.32it/s]
Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.62it/s]
Loading 0: 52%|█████▏ | 152/291 [00:38<00:30, 4.49it/s]
Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.73it/s]
Loading 0: 53%|█████▎ | 154/291 [00:39<00:25, 5.31it/s]
Loading 0: 54%|█████▎ | 156/291 [00:39<00:30, 4.41it/s]
Loading 0: 54%|█████▍ | 157/291 [00:40<00:40, 3.31it/s]
Loading 0: 54%|█████▍ | 158/291 [00:40<00:50, 2.61it/s]
Loading 0: 55%|█████▌ | 161/291 [00:41<00:28, 4.50it/s]
Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.73it/s]
Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.32it/s]
Loading 0: 57%|█████▋ | 165/291 [00:41<00:28, 4.42it/s]
Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.31it/s]
Loading 0: 57%|█████▋ | 167/291 [00:43<00:48, 2.58it/s]
Loading 0: 58%|█████▊ | 170/291 [00:43<00:27, 4.39it/s]
Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.63it/s]
Loading 0: 59%|█████▉ | 172/291 [00:43<00:22, 5.20it/s]
Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.52it/s]
Loading 0: 60%|██████ | 175/291 [00:44<00:23, 4.84it/s]
Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.06it/s]
Loading 0: 61%|██████ | 177/291 [00:44<00:19, 5.72it/s]
Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.52it/s]
Loading 0: 62%|██████▏ | 180/291 [00:45<00:33, 3.32it/s]
Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.60it/s]
Loading 0: 63%|██████▎ | 184/291 [00:46<00:23, 4.55it/s]
Loading 0: 64%|██████▎ | 185/291 [00:46<00:22, 4.78it/s]
Loading 0: 64%|██████▍ | 186/291 [00:46<00:19, 5.36it/s]
Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.31it/s]
Loading 0: 65%|██████▍ | 188/291 [00:47<00:29, 3.50it/s]
Loading 0: 65%|██████▍ | 189/291 [00:48<00:39, 2.61it/s]
Loading 0: 66%|██████▌ | 192/291 [00:48<00:27, 3.56it/s]
Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.95it/s]
Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.46it/s]
Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.21it/s]
Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.46it/s]
Loading 0: 68%|██████▊ | 199/291 [00:50<00:18, 5.03it/s]
Loading 0: 69%|██████▉ | 201/291 [00:51<00:20, 4.30it/s]
Loading 0: 69%|██████▉ | 202/291 [00:51<00:27, 3.27it/s]
Loading 0: 70%|██████▉ | 203/291 [00:52<00:33, 2.61it/s]
Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.41it/s]
Loading 0: 71%|███████ | 207/291 [00:52<00:18, 4.65it/s]
Loading 0: 71%|███████▏ | 208/291 [00:52<00:15, 5.24it/s]
Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.39it/s]
Loading 0: 73%|███████▎ | 211/291 [00:54<00:24, 3.30it/s]
Loading 0: 73%|███████▎ | 212/291 [00:54<00:30, 2.61it/s]
Loading 0: 74%|███████▍ | 215/291 [00:54<00:17, 4.43it/s]
Loading 0: 74%|███████▍ | 216/291 [00:55<00:16, 4.66it/s]
Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.25it/s]
Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.37it/s]
Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.29it/s]
Loading 0: 76%|███████▌ | 221/291 [00:57<00:27, 2.59it/s]
Loading 0: 77%|███████▋ | 224/291 [00:57<00:15, 4.40it/s]
Loading 0: 77%|███████▋ | 225/291 [00:57<00:14, 4.64it/s]
Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.18it/s]
Loading 0: 78%|███████▊ | 228/291 [00:58<00:14, 4.35it/s]
Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.30it/s]
Loading 0: 79%|███████▉ | 230/291 [00:59<00:23, 2.63it/s]
Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.50it/s]
Loading 0: 80%|████████ | 234/291 [00:59<00:12, 4.74it/s]
Loading 0: 81%|████████ | 235/291 [00:59<00:10, 5.24it/s]
Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.39it/s]
Loading 0: 82%|████████▏ | 238/291 [01:00<00:15, 3.32it/s]
Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.62it/s]
Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.49it/s]
Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.72it/s]
Loading 0: 84%|████████▍ | 244/291 [01:02<00:08, 5.24it/s]
Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.39it/s]
Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.32it/s]
Loading 0: 85%|████████▌ | 248/291 [01:03<00:16, 2.62it/s]
Loading 0: 86%|████████▋ | 251/291 [01:04<00:08, 4.50it/s]
Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.72it/s]
Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.28it/s]
Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.41it/s]
Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.31it/s]
Loading 0: 88%|████████▊ | 257/291 [01:06<00:12, 2.64it/s]
Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.48it/s]
Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.71it/s]
Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.27it/s]
Loading 0: 91%|█████████ | 264/291 [01:07<00:06, 4.40it/s]
Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.33it/s]
Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.61it/s]
Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.51it/s]
Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.75it/s]
Loading 0: 93%|█████████▎| 271/291 [01:08<00:03, 5.35it/s]
Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.44it/s]
Loading 0: 94%|█████████▍| 274/291 [01:09<00:05, 3.34it/s]
Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.63it/s]
Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.47it/s]
Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.72it/s]
Loading 0: 96%|█████████▌| 280/291 [01:11<00:02, 5.31it/s]
Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.54it/s]
Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.69it/s]
Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.86it/s]
Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.21it/s]
Loading 0: 98%|█████████▊| 286/291 [01:12<00:01, 4.88it/s]
Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.04it/s]
Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.25it/s]
Job alexdaoud-trainer-bagir-2931-v1-mkmlizer completed after 145.71s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-2931-v1-mkmlizer
Pipeline stage MKMLizer completed in 146.17s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-2931-v1
Waiting for inference service alexdaoud-trainer-bagir-2931-v1 to be ready
Inference service alexdaoud-trainer-bagir-2931-v1 ready after 231.23831701278687s
Pipeline stage MKMLDeployer completed in 231.78s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.8910300731658936s
Received healthy response to inference request in 3.716843366622925s
Received healthy response to inference request in 3.3964169025421143s
Received healthy response to inference request in 4.585834264755249s
Received healthy response to inference request in 3.9087302684783936s
5 requests
0 failed requests
5th percentile: 3.460502195358276
10th percentile: 3.5245874881744386
20th percentile: 3.652758073806763
30th percentile: 3.7516807079315186
40th percentile: 3.821355390548706
50th percentile: 3.8910300731658936
60th percentile: 3.8981101512908936
70th percentile: 3.9051902294158936
80th percentile: 4.044151067733765
90th percentile: 4.314992666244507
95th percentile: 4.450413465499878
99th percentile: 4.558750104904175
mean time: 3.899770975112915
%s, retrying in %s seconds...
Received healthy response to inference request in 6.0037524700164795s
Received healthy response to inference request in 4.326127052307129s
Received healthy response to inference request in 3.593095064163208s
Received healthy response to inference request in 4.068229913711548s
Received healthy response to inference request in 2.3667774200439453s
5 requests
0 failed requests
5th percentile: 2.612040948867798
10th percentile: 2.8573044776916503
20th percentile: 3.3478315353393553
30th percentile: 3.688122034072876
40th percentile: 3.878175973892212
50th percentile: 4.068229913711548
60th percentile: 4.171388769149781
70th percentile: 4.2745476245880125
80th percentile: 4.661652135849
90th percentile: 5.33270230293274
95th percentile: 5.668227386474609
99th percentile: 5.9366474533081055
mean time: 4.071596384048462
%s, retrying in %s seconds...
Received healthy response to inference request in 3.152977705001831s
Received healthy response to inference request in 3.809140920639038s
Received healthy response to inference request in 5.646875619888306s
Received healthy response to inference request in 2.97790789604187s
Received healthy response to inference request in 2.9754889011383057s
5 requests
0 failed requests
5th percentile: 2.9759727001190184
10th percentile: 2.9764564990997315
20th percentile: 2.9774240970611574
30th percentile: 3.012921857833862
40th percentile: 3.0829497814178466
50th percentile: 3.152977705001831
60th percentile: 3.4154429912567137
70th percentile: 3.6779082775115968
80th percentile: 4.176687860488892
90th percentile: 4.911781740188599
95th percentile: 5.279328680038452
99th percentile: 5.573366231918335
mean time: 3.71247820854187
Pipeline stage StressChecker completed in 62.53s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.16s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.06s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_2931_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-2931-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-2931-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-2931-v1-profiler ready after 230.59601712226868s
Pipeline stage MKMLProfilerDeployer completed in 231.02s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplodqflb:/code/chaiverse_profiler_1734433106 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplodqflb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734433106 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734433106/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplodqflb:/code/chaiverse_profiler_1734435877 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplodqflb --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734435877 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734435877/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2931-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-2931-v1-profiler
Service alexdaoud-trainer-bagir-2931-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.31s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2931-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.67s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-2931-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-2931-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-2931-v1-profiler ready after 90.2172224521637s
Pipeline stage MKMLProfilerDeployer completed in 90.56s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplo2fvpc:/code/chaiverse_profiler_1734436591 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplo2fvpc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734436591 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734436591/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplo2fvpc:/code/chaiverse_profiler_1734439338 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplo2fvpc:/code/chaiverse_profiler_1734439338 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplo2fvpc --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734439338 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734439338/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2931-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-2931-v1-profiler
Service alexdaoud-trainer-bagir-2931-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.42s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2931-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.70s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-2931-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-2931-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-2931-v1-profiler ready after 160.43817138671875s
Pipeline stage MKMLProfilerDeployer completed in 160.80s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplocvg8l:/code/chaiverse_profiler_1734440290 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplocvg8l --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734440290 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734440290/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplocvg8l:/code/chaiverse_profiler_1734443089 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplocvg8l:/code/chaiverse_profiler_1734443090 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baf24bd6bc51ea78db02eceb5ec59e3ae9-deplocvg8l --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734443090 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734443090/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2931-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-2931-v1-profiler
Service alexdaoud-trainer-bagir-2931-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.35s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_2931_v1 status is now inactive due to auto deactivation removed underperforming models