developer_uid: chai_backend_admin
submission_id: alexdaoud-trainer-bagir-_2229_v1
model_name: alexdaoud-trainer-bagir-_2229_v1
model_group: alexdaoud/trainer_bagir_
status: inactive
timestamp: 2024-12-16T00:53:49+00:00
num_battles: 25267
num_wins: 12857
celo_rating: 1268.81
family_friendly_score: 0.5774
family_friendly_standard_error: 0.006985831947592212
submission_type: basic
model_repo: alexdaoud/trainer_bagir_2024-12-11-checkpoint-47
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 256
max_output_tokens: 1
display_name: alexdaoud-trainer-bagir-_2229_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: alexdaoud/trainer_bagir_2024-12-11-checkpoint-47
model_size: 8B
ranking_group: single
us_pacific_date: 2024-12-15
win_ratio: 0.5088455297423516
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 256, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-2229-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-2229-v1-mkmlizer to finish
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-2229-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Connection pool is full, discarding connection: %s. Connection pool size: %s
alexdaoud-trainer-bagir-2229-v1-mkmlizer: Downloaded to shared memory in 36.340s
alexdaoud-trainer-bagir-2229-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpase5lbcx, device:0
alexdaoud-trainer-bagir-2229-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-2229-v1-mkmlizer: quantized model in 85.297s
alexdaoud-trainer-bagir-2229-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-47 in 121.638s
alexdaoud-trainer-bagir-2229-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-2229-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-2229-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2229-v1
alexdaoud-trainer-bagir-2229-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2229-v1/config.json
alexdaoud-trainer-bagir-2229-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2229-v1/special_tokens_map.json
alexdaoud-trainer-bagir-2229-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2229-v1/tokenizer_config.json
alexdaoud-trainer-bagir-2229-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2229-v1/tokenizer.json
alexdaoud-trainer-bagir-2229-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-2229-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-2229-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 1%| | 3/291 [00:00<00:56, 5.13it/s] Loading 0: 1%|▏ | 4/291 [00:01<01:31, 3.14it/s] Loading 0: 2%|▏ | 5/291 [00:01<02:03, 2.32it/s] Loading 0: 3%|▎ | 8/291 [00:02<01:03, 4.43it/s] Loading 0: 3%|▎ | 9/291 [00:02<01:02, 4.50it/s] Loading 0: 3%|▎ | 10/291 [00:02<00:54, 5.14it/s] Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.28it/s] Loading 0: 4%|▍ | 13/291 [00:03<01:26, 3.22it/s] Loading 0: 5%|▍ | 14/291 [00:04<01:48, 2.54it/s] Loading 0: 6%|▌ | 17/291 [00:04<01:02, 4.38it/s] Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.61it/s] Loading 0: 7%|▋ | 19/291 [00:04<00:52, 5.19it/s] Loading 0: 7%|▋ | 21/291 [00:05<01:02, 4.35it/s] Loading 0: 8%|▊ | 22/291 [00:05<01:22, 3.27it/s] Loading 0: 8%|▊ | 23/291 [00:06<01:44, 2.57it/s] Loading 0: 9%|▉ | 26/291 [00:06<01:00, 4.37it/s] Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.61it/s] Loading 0: 10%|▉ | 28/291 [00:06<00:50, 5.22it/s] Loading 0: 10%|█ | 30/291 [00:07<01:00, 4.35it/s] Loading 0: 11%|█ | 31/291 [00:08<01:19, 3.29it/s] Loading 0: 11%|█ | 32/291 [00:08<01:39, 2.60it/s] Loading 0: 12%|█▏ | 35/291 [00:08<00:57, 4.42it/s] Loading 0: 12%|█▏ | 36/291 [00:09<00:54, 4.65it/s] Loading 0: 13%|█▎ | 37/291 [00:09<00:48, 5.18it/s] Loading 0: 13%|█▎ | 39/291 [00:09<00:58, 4.34it/s] Loading 0: 14%|█▎ | 40/291 [00:10<01:16, 3.29it/s] Loading 0: 14%|█▍ | 41/291 [00:11<01:36, 2.58it/s] Loading 0: 15%|█▌ | 44/291 [00:11<00:56, 4.38it/s] Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.61it/s] Loading 0: 16%|█▌ | 46/291 [00:11<00:47, 5.21it/s] Loading 0: 16%|█▋ | 48/291 [00:12<00:55, 4.37it/s] Loading 0: 17%|█▋ | 49/291 [00:12<01:13, 3.28it/s] Loading 0: 17%|█▋ | 50/291 [00:13<01:33, 2.58it/s] Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.38it/s] Loading 0: 19%|█▊ | 54/291 [00:13<00:50, 4.70it/s] Loading 0: 19%|█▉ | 55/291 [00:13<00:44, 5.30it/s] Loading 0: 20%|█▉ | 57/291 [00:14<00:53, 4.40it/s] Loading 0: 20%|█▉ | 58/291 [00:14<01:10, 3.32it/s] Loading 0: 20%|██ | 59/291 [00:15<01:28, 2.61it/s] Loading 0: 21%|██▏ | 62/291 [00:15<00:51, 4.44it/s] Loading 0: 22%|██▏ | 63/291 [00:16<00:48, 4.68it/s] Loading 0: 23%|██▎ | 66/291 [00:16<00:49, 4.56it/s] Loading 0: 23%|██▎ | 67/291 [00:17<01:03, 3.54it/s] Loading 0: 23%|██▎ | 68/291 [00:17<01:19, 2.81it/s] Loading 0: 24%|██▍ | 71/291 [00:18<00:48, 4.50it/s] Loading 0: 25%|██▍ | 72/291 [00:18<00:46, 4.72it/s] Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.28it/s] Loading 0: 26%|██▌ | 75/291 [00:18<00:48, 4.41it/s] Loading 0: 26%|██▌ | 76/291 [00:19<01:04, 3.34it/s] Loading 0: 26%|██▋ | 77/291 [00:20<01:20, 2.64it/s] Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.43it/s] Loading 0: 28%|██▊ | 81/291 [00:20<00:44, 4.67it/s] Loading 0: 28%|██▊ | 82/291 [00:20<00:39, 5.27it/s] Loading 0: 29%|██▊ | 83/291 [00:20<00:39, 5.31it/s] Loading 0: 29%|██▉ | 84/291 [00:21<00:59, 3.49it/s] Loading 0: 29%|██▉ | 85/291 [00:21<01:14, 2.76it/s] Loading 0: 30%|██▉ | 86/291 [00:22<01:30, 2.27it/s] Loading 0: 31%|███ | 89/291 [00:22<00:48, 4.16it/s] Loading 0: 31%|███ | 90/291 [00:23<00:45, 4.44it/s] Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.07it/s] Loading 0: 32%|███▏ | 93/291 [00:23<00:46, 4.28it/s] Loading 0: 32%|███▏ | 94/291 [00:24<01:01, 3.22it/s] Loading 0: 33%|███▎ | 95/291 [00:24<01:17, 2.55it/s] Loading 0: 34%|███▎ | 98/291 [00:25<00:43, 4.41it/s] Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.65it/s] Loading 0: 34%|███▍ | 100/291 [00:25<00:36, 5.24it/s] Loading 0: 35%|███▌ | 102/291 [00:25<00:43, 4.36it/s] Loading 0: 35%|███▌ | 103/291 [00:26<00:57, 3.29it/s] Loading 0: 36%|███▌ | 104/291 [00:27<01:12, 2.59it/s] Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.46it/s] Loading 0: 37%|███▋ | 108/291 [00:27<00:38, 4.70it/s] Loading 0: 38%|███▊ | 110/291 [00:27<00:28, 6.45it/s] Loading 0: 38%|███▊ | 112/291 [00:28<00:53, 3.38it/s] Loading 0: 39%|███▉ | 113/291 [00:29<01:04, 2.76it/s] Loading 0: 40%|███▉ | 116/291 [00:29<00:39, 4.42it/s] Loading 0: 40%|████ | 117/291 [00:29<00:37, 4.64it/s] Loading 0: 41%|████ | 118/291 [00:29<00:33, 5.17it/s] Loading 0: 41%|████ | 120/291 [00:30<00:39, 4.38it/s] Loading 0: 42%|████▏ | 121/291 [00:31<00:50, 3.33it/s] Loading 0: 42%|████▏ | 122/291 [00:31<01:03, 2.64it/s] Loading 0: 43%|████▎ | 125/291 [00:31<00:37, 4.44it/s] Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.68it/s] Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.27it/s] Loading 0: 44%|████▍ | 129/291 [00:32<00:36, 4.40it/s] Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.32it/s] Loading 0: 45%|████▌ | 131/291 [00:33<01:01, 2.61it/s] Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.42it/s] Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.66it/s] Loading 0: 47%|████▋ | 136/291 [00:34<00:29, 5.26it/s] Loading 0: 47%|████▋ | 138/291 [00:35<00:34, 4.39it/s] Loading 0: 48%|████▊ | 139/291 [00:35<00:45, 3.32it/s] Loading 0: 48%|████▊ | 140/291 [00:36<00:57, 2.63it/s] Loading 0: 49%|████▉ | 143/291 [00:36<00:32, 4.50it/s] Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.74it/s] Loading 0: 50%|████▉ | 145/291 [00:36<00:27, 5.28it/s] Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.41it/s] Loading 0: 51%|█████ | 148/291 [00:37<00:42, 3.33it/s] Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.62it/s] Loading 0: 52%|█████▏ | 152/291 [00:38<00:30, 4.49it/s] Loading 0: 53%|█████▎ | 153/291 [00:38<00:29, 4.73it/s] Loading 0: 54%|█████▎ | 156/291 [00:39<00:29, 4.59it/s] Loading 0: 54%|█████▍ | 157/291 [00:40<00:37, 3.56it/s] Loading 0: 54%|█████▍ | 158/291 [00:40<00:47, 2.82it/s] Loading 0: 55%|█████▌ | 161/291 [00:40<00:28, 4.51it/s] Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.73it/s] Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.29it/s] Loading 0: 57%|█████▋ | 165/291 [00:41<00:28, 4.43it/s] Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.36it/s] Loading 0: 57%|█████▋ | 167/291 [00:43<00:46, 2.66it/s] Loading 0: 58%|█████▊ | 170/291 [00:43<00:26, 4.52it/s] Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.76it/s] Loading 0: 59%|█████▉ | 173/291 [00:44<00:30, 3.92it/s] Loading 0: 60%|██████ | 175/291 [00:44<00:23, 4.98it/s] Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.16it/s] Loading 0: 61%|██████ | 177/291 [00:44<00:20, 5.69it/s] Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.57it/s] Loading 0: 62%|██████▏ | 180/291 [00:45<00:32, 3.39it/s] Loading 0: 62%|██████▏ | 181/291 [00:46<00:41, 2.68it/s] Loading 0: 63%|██████▎ | 184/291 [00:46<00:23, 4.60it/s] Loading 0: 64%|██████▎ | 185/291 [00:46<00:21, 4.83it/s] Loading 0: 64%|██████▍ | 186/291 [00:46<00:19, 5.43it/s] Loading 0: 64%|██████▍ | 187/291 [00:46<00:19, 5.45it/s] Loading 0: 65%|██████▍ | 188/291 [00:47<00:29, 3.54it/s] Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.66it/s] Loading 0: 66%|██████▌ | 192/291 [00:48<00:27, 3.60it/s] Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.96it/s] Loading 0: 67%|██████▋ | 194/291 [00:49<00:39, 2.47it/s] Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.17it/s] Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.43it/s] Loading 0: 68%|██████▊ | 199/291 [00:50<00:18, 5.02it/s] Loading 0: 69%|██████▉ | 201/291 [00:50<00:20, 4.30it/s] Loading 0: 69%|██████▉ | 202/291 [00:51<00:27, 3.28it/s] Loading 0: 70%|██████▉ | 203/291 [00:52<00:33, 2.63it/s] Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.44it/s] Loading 0: 71%|███████ | 207/291 [00:52<00:17, 4.68it/s] Loading 0: 71%|███████▏ | 208/291 [00:52<00:16, 5.16it/s] Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.36it/s] Loading 0: 73%|███████▎ | 211/291 [00:53<00:24, 3.30it/s] Loading 0: 73%|███████▎ | 212/291 [00:54<00:30, 2.62it/s] Loading 0: 74%|███████▍ | 215/291 [00:54<00:17, 4.44it/s] Loading 0: 74%|███████▍ | 216/291 [00:54<00:16, 4.68it/s] Loading 0: 75%|███████▍ | 217/291 [00:54<00:14, 5.27it/s] Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.40it/s] Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.32it/s] Loading 0: 76%|███████▌ | 221/291 [00:56<00:26, 2.63it/s] Loading 0: 77%|███████▋ | 224/291 [00:56<00:14, 4.47it/s] Loading 0: 77%|███████▋ | 225/291 [00:57<00:14, 4.71it/s] Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.26it/s] Loading 0: 78%|███████▊ | 228/291 [00:57<00:14, 4.40it/s] Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.32it/s] Loading 0: 79%|███████▉ | 230/291 [00:58<00:23, 2.63it/s] Loading 0: 80%|████████ | 233/291 [00:59<00:13, 4.45it/s] Loading 0: 80%|████████ | 234/291 [00:59<00:12, 4.69it/s] Loading 0: 81%|████████ | 235/291 [00:59<00:10, 5.26it/s] Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.41it/s] Loading 0: 82%|████████▏ | 238/291 [01:00<00:15, 3.33it/s] Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.65it/s] Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.55it/s] Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.78it/s] Loading 0: 84%|████████▍ | 244/291 [01:01<00:08, 5.37it/s] Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.46it/s] Loading 0: 85%|████████▍ | 247/291 [01:02<00:13, 3.35it/s] Loading 0: 85%|████████▌ | 248/291 [01:03<00:16, 2.65it/s] Loading 0: 86%|████████▋ | 251/291 [01:03<00:08, 4.46it/s] Loading 0: 87%|████████▋ | 252/291 [01:03<00:08, 4.70it/s] Loading 0: 87%|████████▋ | 253/291 [01:03<00:07, 5.28it/s] Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.42it/s] Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.34it/s] Loading 0: 88%|████████▊ | 257/291 [01:05<00:12, 2.64it/s] Loading 0: 89%|████████▉ | 260/291 [01:05<00:06, 4.53it/s] Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.76it/s] Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.36it/s] Loading 0: 91%|█████████ | 264/291 [01:06<00:06, 4.45it/s] Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.34it/s] Loading 0: 91%|█████████▏| 266/291 [01:07<00:09, 2.62it/s] Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.51it/s] Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.74it/s] Loading 0: 93%|█████████▎| 271/291 [01:08<00:03, 5.34it/s] Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.44it/s] Loading 0: 94%|█████████▍| 274/291 [01:09<00:05, 3.33it/s] Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.64it/s] Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.54it/s] Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.77it/s] Loading 0: 96%|█████████▌| 280/291 [01:10<00:02, 5.35it/s] Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.59it/s] Loading 0: 97%|█████████▋| 282/291 [01:11<00:03, 2.73it/s] Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.91it/s] Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.26it/s] Loading 0: 98%|█████████▊| 286/291 [01:12<00:01, 4.92it/s] Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.04it/s] Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.33it/s]
Job alexdaoud-trainer-bagir-2229-v1-mkmlizer completed after 145.54s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-2229-v1-mkmlizer
Pipeline stage MKMLizer completed in 146.01s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-2229-v1
Waiting for inference service alexdaoud-trainer-bagir-2229-v1 to be ready
Retrying (%r) after connection broken by '%r': %s
Inference service alexdaoud-trainer-bagir-2229-v1 ready after 210.9053180217743s
Pipeline stage MKMLDeployer completed in 211.37s
run pipeline stage %s
Running pipeline stage StressChecker
HTTPConnectionPool(host='guanaco-submitter.guanaco-backend.k2.chaiverse.com', port=80): Read timed out. (read timeout=20)
Received unhealthy response to inference request!
Received healthy response to inference request in 3.156202554702759s
Received healthy response to inference request in 3.8027851581573486s
Received healthy response to inference request in 3.8853769302368164s
Received healthy response to inference request in 3.37060284614563s
5 requests
1 failed requests
5th percentile: 3.199082612991333
10th percentile: 3.2419626712799072
20th percentile: 3.3277227878570557
30th percentile: 3.457039308547974
40th percentile: 3.629912233352661
50th percentile: 3.8027851581573486
60th percentile: 3.8358218669891357
70th percentile: 3.868858575820923
80th percentile: 7.134225320816043
90th percentile: 13.631922101974489
95th percentile: 16.880770492553708
99th percentile: 19.47984920501709
mean time: 6.8689172744750975
%s, retrying in %s seconds...
Received healthy response to inference request in 2.9924850463867188s
Received healthy response to inference request in 3.4578359127044678s
Received healthy response to inference request in 4.3533453941345215s
Received healthy response to inference request in 2.766637086868286s
Received healthy response to inference request in 3.89378023147583s
5 requests
0 failed requests
5th percentile: 2.8118066787719727
10th percentile: 2.856976270675659
20th percentile: 2.9473154544830322
30th percentile: 3.0855552196502685
40th percentile: 3.2716955661773683
50th percentile: 3.4578359127044678
60th percentile: 3.6322136402130125
70th percentile: 3.8065913677215577
80th percentile: 3.9856932640075686
90th percentile: 4.169519329071045
95th percentile: 4.261432361602783
99th percentile: 4.334962787628174
mean time: 3.4928167343139647
%s, retrying in %s seconds...
Received healthy response to inference request in 2.363893985748291s
Received healthy response to inference request in 4.2060706615448s
Received healthy response to inference request in 2.2188923358917236s
Received healthy response to inference request in 2.260692834854126s
Received healthy response to inference request in 3.672485113143921s
5 requests
0 failed requests
5th percentile: 2.2272524356842043
10th percentile: 2.2356125354766845
20th percentile: 2.2523327350616453
30th percentile: 2.281333065032959
40th percentile: 2.322613525390625
50th percentile: 2.363893985748291
60th percentile: 2.887330436706543
70th percentile: 3.4107668876647947
80th percentile: 3.7792022228240967
90th percentile: 3.9926364421844482
95th percentile: 4.099353551864624
99th percentile: 4.1847272396087645
mean time: 2.9444069862365723
Pipeline stage StressChecker completed in 70.51s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.10s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.09s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_2229_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-2229-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-2229-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-2229-v1-profiler ready after 220.49492287635803s
Pipeline stage MKMLProfilerDeployer completed in 220.89s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplo6hwtn:/code/chaiverse_profiler_1734311116 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplo6hwtn --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734311116 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734311116/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplo6hwtn:/code/chaiverse_profiler_1734313908 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplo6hwtn:/code/chaiverse_profiler_1734313909 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplo6hwtn --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734313909 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734313909/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2229-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-2229-v1-profiler
Service alexdaoud-trainer-bagir-2229-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.17s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2229-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.61s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-2229-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-2229-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-2229-v1-profiler ready after 40.11589813232422s
Pipeline stage MKMLProfilerDeployer completed in 40.45s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplovzqpm:/code/chaiverse_profiler_1734314564 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplovzqpm --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734314564 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734314564/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplovzqpm:/code/chaiverse_profiler_1734317332 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplovzqpm:/code/chaiverse_profiler_1734317333 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplovzqpm --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734317333 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734317333/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2229-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-2229-v1-profiler
Service alexdaoud-trainer-bagir-2229-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.30s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2229-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.55s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-2229-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-2229-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-2229-v1-profiler ready after 50.144911766052246s
Pipeline stage MKMLProfilerDeployer completed in 50.47s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplodzvwq:/code/chaiverse_profiler_1734318205 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplodzvwq --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734318205 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734318205/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplodzvwq:/code/chaiverse_profiler_1734320998 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplodzvwq:/code/chaiverse_profiler_1734320999 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba0c5a1f0b42a4fb88d2e4279f129c8e51-deplodzvwq --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734320999 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734320999/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-2229-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-2229-v1-profiler
Service alexdaoud-trainer-bagir-2229-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.35s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_2229_v1 status is now inactive due to auto deactivation removed underperforming models