developer_uid: chai_backend_admin
submission_id: alexdaoud-trainer-bagir-_1637_v1
model_name: alexdaoud-trainer-bagir-_1637_v1
model_group: alexdaoud/trainer_bagir_
status: inactive
timestamp: 2024-12-16T09:38:39+00:00
num_battles: 28055
num_wins: 14216
celo_rating: 1267.28
family_friendly_score: 0.5800000000000001
family_friendly_standard_error: 0.006979971346646059
submission_type: basic
model_repo: alexdaoud/trainer_bagir_2024-12-11-checkpoint-56
model_architecture: LlamaForSequenceClassification
model_num_parameters: 8030261248.0
best_of: 1
max_input_tokens: 256
max_output_tokens: 1
display_name: alexdaoud-trainer-bagir-_1637_v1
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: alexdaoud/trainer_bagir_2024-12-11-checkpoint-56
model_size: 8B
ranking_group: single
us_pacific_date: 2024-12-16
win_ratio: 0.5067189449296026
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 256, 'best_of': 1, 'max_output_tokens': 1}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-1637-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-1637-v1-mkmlizer to finish
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-1637-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-1637-v1-mkmlizer: Downloaded to shared memory in 30.801s
alexdaoud-trainer-bagir-1637-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpmj0c02i_, device:0
alexdaoud-trainer-bagir-1637-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
alexdaoud-trainer-bagir-1637-v1-mkmlizer: quantized model in 85.741s
alexdaoud-trainer-bagir-1637-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-56 in 116.542s
alexdaoud-trainer-bagir-1637-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-1637-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-1637-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-1637-v1
alexdaoud-trainer-bagir-1637-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-1637-v1/special_tokens_map.json
alexdaoud-trainer-bagir-1637-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-1637-v1/config.json
alexdaoud-trainer-bagir-1637-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-1637-v1/tokenizer_config.json
alexdaoud-trainer-bagir-1637-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-1637-v1/tokenizer.json
alexdaoud-trainer-bagir-1637-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-1637-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-1637-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 1%| | 3/291 [00:00<00:56, 5.12it/s] Loading 0: 1%|▏ | 4/291 [00:01<01:31, 3.13it/s] Loading 0: 2%|▏ | 5/291 [00:01<02:03, 2.31it/s] Loading 0: 3%|▎ | 8/291 [00:02<01:03, 4.43it/s] Loading 0: 3%|▎ | 9/291 [00:02<01:02, 4.49it/s] Loading 0: 3%|▎ | 10/291 [00:02<00:54, 5.11it/s] Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.26it/s] Loading 0: 4%|▍ | 13/291 [00:03<01:27, 3.19it/s] Loading 0: 5%|▍ | 14/291 [00:04<01:49, 2.53it/s] Loading 0: 6%|▌ | 17/291 [00:04<01:03, 4.34it/s] Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.56it/s] Loading 0: 7%|▋ | 19/291 [00:04<00:53, 5.07it/s] Loading 0: 7%|▋ | 21/291 [00:05<01:03, 4.27it/s] Loading 0: 8%|▊ | 22/291 [00:05<01:22, 3.24it/s] Loading 0: 8%|▊ | 23/291 [00:06<01:45, 2.55it/s] Loading 0: 9%|▉ | 26/291 [00:06<01:01, 4.33it/s] Loading 0: 9%|▉ | 27/291 [00:06<00:57, 4.57it/s] Loading 0: 10%|▉ | 28/291 [00:07<00:51, 5.14it/s] Loading 0: 10%|█ | 30/291 [00:07<01:00, 4.32it/s] Loading 0: 11%|█ | 31/291 [00:08<01:19, 3.27it/s] Loading 0: 11%|█ | 32/291 [00:08<01:40, 2.57it/s] Loading 0: 12%|█▏ | 35/291 [00:09<00:58, 4.37it/s] Loading 0: 12%|█▏ | 36/291 [00:09<00:55, 4.60it/s] Loading 0: 13%|█▎ | 37/291 [00:09<00:49, 5.15it/s] Loading 0: 13%|█▎ | 39/291 [00:09<00:58, 4.33it/s] Loading 0: 14%|█▎ | 40/291 [00:10<01:16, 3.28it/s] Loading 0: 14%|█▍ | 41/291 [00:11<01:37, 2.57it/s] Loading 0: 15%|█▌ | 44/291 [00:11<00:56, 4.36it/s] Loading 0: 15%|█▌ | 45/291 [00:11<00:53, 4.59it/s] Loading 0: 16%|█▌ | 46/291 [00:11<00:47, 5.16it/s] Loading 0: 16%|█▋ | 48/291 [00:12<00:56, 4.32it/s] Loading 0: 17%|█▋ | 49/291 [00:12<01:14, 3.26it/s] Loading 0: 17%|█▋ | 50/291 [00:13<01:34, 2.56it/s] Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.34it/s] Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.59it/s] Loading 0: 19%|█▉ | 55/291 [00:13<00:45, 5.19it/s] Loading 0: 20%|█▉ | 57/291 [00:14<00:53, 4.35it/s] Loading 0: 20%|█▉ | 58/291 [00:15<01:10, 3.29it/s] Loading 0: 20%|██ | 59/291 [00:15<01:29, 2.58it/s] Loading 0: 21%|██▏ | 62/291 [00:15<00:52, 4.39it/s] Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.63it/s] Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.21it/s] Loading 0: 23%|██▎ | 66/291 [00:16<00:51, 4.36it/s] Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.28it/s] Loading 0: 23%|██▎ | 68/291 [00:18<01:25, 2.61it/s] Loading 0: 24%|██▍ | 71/291 [00:18<00:49, 4.44it/s] Loading 0: 25%|██▍ | 72/291 [00:18<00:46, 4.68it/s] Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.28it/s] Loading 0: 26%|██▌ | 75/291 [00:19<00:49, 4.39it/s] Loading 0: 26%|██▌ | 76/291 [00:19<01:04, 3.31it/s] Loading 0: 26%|██▋ | 77/291 [00:20<01:22, 2.60it/s] Loading 0: 27%|██▋ | 80/291 [00:20<00:47, 4.47it/s] Loading 0: 28%|██▊ | 81/291 [00:20<00:44, 4.70it/s] Loading 0: 28%|██▊ | 82/291 [00:20<00:39, 5.29it/s] Loading 0: 29%|██▊ | 83/291 [00:20<00:39, 5.32it/s] Loading 0: 29%|██▉ | 84/291 [00:21<00:59, 3.50it/s] Loading 0: 29%|██▉ | 85/291 [00:22<01:14, 2.76it/s] Loading 0: 30%|██▉ | 86/291 [00:22<01:30, 2.25it/s] Loading 0: 31%|███ | 89/291 [00:22<00:48, 4.20it/s] Loading 0: 31%|███ | 90/291 [00:23<00:44, 4.47it/s] Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.10it/s] Loading 0: 32%|███▏ | 93/291 [00:23<00:46, 4.29it/s] Loading 0: 32%|███▏ | 94/291 [00:24<01:00, 3.23it/s] Loading 0: 33%|███▎ | 95/291 [00:25<01:16, 2.56it/s] Loading 0: 34%|███▎ | 98/291 [00:25<00:43, 4.43it/s] Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.67it/s] Loading 0: 34%|███▍ | 100/291 [00:25<00:36, 5.28it/s] Loading 0: 35%|███▌ | 102/291 [00:26<00:43, 4.38it/s] Loading 0: 35%|███▌ | 103/291 [00:26<00:57, 3.29it/s] Loading 0: 36%|███▌ | 104/291 [00:27<01:11, 2.60it/s] Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.49it/s] Loading 0: 37%|███▋ | 108/291 [00:27<00:38, 4.73it/s] Loading 0: 37%|███▋ | 109/291 [00:27<00:34, 5.31it/s] Loading 0: 38%|███▊ | 111/291 [00:28<00:40, 4.40it/s] Loading 0: 38%|███▊ | 112/291 [00:28<00:54, 3.31it/s] Loading 0: 39%|███▉ | 113/291 [00:29<01:07, 2.62it/s] Loading 0: 40%|███▉ | 116/291 [00:29<00:39, 4.46it/s] Loading 0: 40%|████ | 117/291 [00:29<00:37, 4.69it/s] Loading 0: 41%|████ | 118/291 [00:30<00:32, 5.27it/s] Loading 0: 41%|████ | 120/291 [00:30<00:38, 4.39it/s] Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.30it/s] Loading 0: 42%|████▏ | 122/291 [00:31<01:04, 2.62it/s] Loading 0: 43%|████▎ | 125/291 [00:32<00:37, 4.44it/s] Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.68it/s] Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.28it/s] Loading 0: 44%|████▍ | 129/291 [00:32<00:36, 4.40it/s] Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.30it/s] Loading 0: 45%|████▌ | 131/291 [00:34<01:01, 2.59it/s] Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.44it/s] Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.69it/s] Loading 0: 47%|████▋ | 136/291 [00:34<00:29, 5.27it/s] Loading 0: 47%|████▋ | 138/291 [00:35<00:34, 4.40it/s] Loading 0: 48%|████▊ | 139/291 [00:35<00:45, 3.31it/s] Loading 0: 48%|████▊ | 140/291 [00:36<00:57, 2.61it/s] Loading 0: 49%|████▉ | 143/291 [00:36<00:32, 4.50it/s] Loading 0: 49%|████▉ | 144/291 [00:36<00:31, 4.74it/s] Loading 0: 50%|████▉ | 145/291 [00:36<00:27, 5.33it/s] Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.41it/s] Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.31it/s] Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.60it/s] Loading 0: 52%|█████▏ | 152/291 [00:38<00:31, 4.45it/s] Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.69it/s] Loading 0: 53%|█████▎ | 154/291 [00:39<00:25, 5.28it/s] Loading 0: 54%|█████▎ | 156/291 [00:39<00:30, 4.39it/s] Loading 0: 54%|█████▍ | 157/291 [00:40<00:40, 3.29it/s] Loading 0: 54%|█████▍ | 158/291 [00:40<00:50, 2.61it/s] Loading 0: 55%|█████▌ | 161/291 [00:41<00:28, 4.50it/s] Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.73it/s] Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.25it/s] Loading 0: 57%|█████▋ | 165/291 [00:41<00:28, 4.38it/s] Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.31it/s] Loading 0: 57%|█████▋ | 167/291 [00:43<00:47, 2.62it/s] Loading 0: 58%|█████▊ | 170/291 [00:43<00:27, 4.44it/s] Loading 0: 59%|█████▉ | 171/291 [00:43<00:25, 4.68it/s] Loading 0: 59%|█████▉ | 172/291 [00:43<00:22, 5.24it/s] Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.55it/s] Loading 0: 60%|██████ | 175/291 [00:44<00:24, 4.77it/s] Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.01it/s] Loading 0: 61%|██████ | 177/291 [00:44<00:20, 5.69it/s] Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.50it/s] Loading 0: 62%|██████▏ | 180/291 [00:45<00:33, 3.31it/s] Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.59it/s] Loading 0: 63%|██████▎ | 184/291 [00:46<00:23, 4.52it/s] Loading 0: 64%|██████▎ | 185/291 [00:46<00:22, 4.76it/s] Loading 0: 64%|██████▍ | 186/291 [00:46<00:19, 5.36it/s] Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.32it/s] Loading 0: 65%|██████▍ | 188/291 [00:47<00:29, 3.49it/s] Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.63it/s] Loading 0: 66%|██████▌ | 192/291 [00:48<00:27, 3.58it/s] Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.95it/s] Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.45it/s] Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.17it/s] Loading 0: 68%|██████▊ | 198/291 [00:50<00:20, 4.44it/s] Loading 0: 68%|██████▊ | 199/291 [00:50<00:18, 5.03it/s] Loading 0: 69%|██████▉ | 201/291 [00:51<00:20, 4.31it/s] Loading 0: 69%|██████▉ | 202/291 [00:51<00:27, 3.29it/s] Loading 0: 70%|██████▉ | 203/291 [00:52<00:33, 2.63it/s] Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.44it/s] Loading 0: 71%|███████ | 207/291 [00:52<00:17, 4.68it/s] Loading 0: 71%|███████▏ | 208/291 [00:52<00:15, 5.29it/s] Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.41it/s] Loading 0: 73%|███████▎ | 211/291 [00:54<00:24, 3.32it/s] Loading 0: 73%|███████▎ | 212/291 [00:54<00:30, 2.63it/s] Loading 0: 74%|███████▍ | 215/291 [00:54<00:16, 4.50it/s] Loading 0: 74%|███████▍ | 216/291 [00:55<00:15, 4.73it/s] Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.28it/s] Loading 0: 75%|███████▌ | 219/291 [00:55<00:16, 4.37it/s] Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.30it/s] Loading 0: 76%|███████▌ | 221/291 [00:56<00:26, 2.62it/s] Loading 0: 77%|███████▋ | 224/291 [00:57<00:14, 4.49it/s] Loading 0: 77%|███████▋ | 225/291 [00:57<00:13, 4.73it/s] Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.32it/s] Loading 0: 78%|███████▊ | 228/291 [00:58<00:14, 4.40it/s] Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.33it/s] Loading 0: 79%|███████▉ | 230/291 [00:59<00:23, 2.63it/s] Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.46it/s] Loading 0: 80%|████████ | 234/291 [00:59<00:12, 4.70it/s] Loading 0: 81%|████████ | 235/291 [00:59<00:10, 5.29it/s] Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.40it/s] Loading 0: 82%|████████▏ | 238/291 [01:00<00:15, 3.33it/s] Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.64it/s] Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.47it/s] Loading 0: 84%|████████▎ | 243/291 [01:01<00:10, 4.71it/s] Loading 0: 84%|████████▍ | 244/291 [01:01<00:08, 5.29it/s] Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.42it/s] Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.33it/s] Loading 0: 85%|████████▌ | 248/291 [01:03<00:16, 2.64it/s] Loading 0: 86%|████████▋ | 251/291 [01:03<00:08, 4.48it/s] Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.72it/s] Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.29it/s] Loading 0: 88%|████████▊ | 255/291 [01:04<00:08, 4.41it/s] Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.33it/s] Loading 0: 88%|████████▊ | 257/291 [01:05<00:12, 2.63it/s] Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.51it/s] Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.74it/s] Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.32it/s] Loading 0: 91%|█████████ | 264/291 [01:07<00:06, 4.42it/s] Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.34it/s] Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.64it/s] Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.53it/s] Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.76it/s] Loading 0: 93%|█████████▎| 271/291 [01:08<00:03, 5.35it/s] Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.40it/s] Loading 0: 94%|█████████▍| 274/291 [01:09<00:05, 3.32it/s] Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.62it/s] Loading 0: 96%|█████████▌| 278/291 [01:10<00:02, 4.50it/s] Loading 0: 96%|█████████▌| 279/291 [01:10<00:02, 4.72it/s] Loading 0: 96%|█████████▌| 280/291 [01:10<00:02, 5.23it/s] Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.55it/s] Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.68it/s] Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.84it/s] Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.19it/s] Loading 0: 98%|█████████▊| 286/291 [01:12<00:01, 4.87it/s] Loading 0: 99%|█████████▊| 287/291 [01:12<00:00, 5.04it/s] Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.32it/s]
Job alexdaoud-trainer-bagir-1637-v1-mkmlizer completed after 136.28s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-1637-v1-mkmlizer
Pipeline stage MKMLizer completed in 136.79s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-1637-v1
Waiting for inference service alexdaoud-trainer-bagir-1637-v1 to be ready
Inference service alexdaoud-trainer-bagir-1637-v1 ready after 220.78971815109253s
Pipeline stage MKMLDeployer completed in 221.32s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.095961809158325s
Received healthy response to inference request in 2.2525155544281006s
Received healthy response to inference request in 4.478497505187988s
Received healthy response to inference request in 3.632481813430786s
Received healthy response to inference request in 3.436328649520874s
5 requests
0 failed requests
5th percentile: 2.4892781734466554
10th percentile: 2.72604079246521
20th percentile: 3.1995660305023192
30th percentile: 3.4755592823028563
40th percentile: 3.554020547866821
50th percentile: 3.632481813430786
60th percentile: 3.9708880901336667
70th percentile: 4.309294366836547
80th percentile: 4.601990365982056
90th percentile: 4.848976087570191
95th percentile: 4.9724689483642575
99th percentile: 5.071263236999512
mean time: 3.7791570663452148
%s, retrying in %s seconds...
Received healthy response to inference request in 4.316685438156128s
Received healthy response to inference request in 3.4860291481018066s
Received healthy response to inference request in 6.019898414611816s
Received healthy response to inference request in 3.3012545108795166s
Received healthy response to inference request in 5.5205979347229s
5 requests
0 failed requests
5th percentile: 3.3382094383239744
10th percentile: 3.3751643657684327
20th percentile: 3.449074220657349
30th percentile: 3.652160406112671
40th percentile: 3.9844229221343994
50th percentile: 4.316685438156128
60th percentile: 4.798250436782837
70th percentile: 5.279815435409546
80th percentile: 5.620458030700684
90th percentile: 5.82017822265625
95th percentile: 5.920038318634033
99th percentile: 5.99992639541626
mean time: 4.528893089294433
%s, retrying in %s seconds...
Received healthy response to inference request in 3.2249226570129395s
Received healthy response to inference request in 2.433238983154297s
Received healthy response to inference request in 4.357373952865601s
Received healthy response to inference request in 3.2626891136169434s
Received healthy response to inference request in 3.252150535583496s
5 requests
0 failed requests
5th percentile: 2.5915757179260255
10th percentile: 2.749912452697754
20th percentile: 3.066585922241211
30th percentile: 3.230368232727051
40th percentile: 3.2412593841552733
50th percentile: 3.252150535583496
60th percentile: 3.256365966796875
70th percentile: 3.260581398010254
80th percentile: 3.481626081466675
90th percentile: 3.9195000171661376
95th percentile: 4.138436985015869
99th percentile: 4.313586559295654
mean time: 3.3060750484466555
Pipeline stage StressChecker completed in 62.03s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.38s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.10s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_1637_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-1637-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-1637-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-1637-v1-profiler ready after 220.47752380371094s
Pipeline stage MKMLProfilerDeployer completed in 220.83s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo7czs2:/code/chaiverse_profiler_1734342595 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo7czs2 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734342595 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734342595/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo7czs2:/code/chaiverse_profiler_1734345363 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo7czs2 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734345363 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734345363/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-1637-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-1637-v1-profiler
Service alexdaoud-trainer-bagir-1637-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.41s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-1637-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.54s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-1637-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-1637-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-1637-v1-profiler ready after 110.25693845748901s
Pipeline stage MKMLProfilerDeployer completed in 110.58s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplod7gsr:/code/chaiverse_profiler_1734346117 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplod7gsr --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734346117 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734346117/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplod7gsr:/code/chaiverse_profiler_1734348916 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplod7gsr:/code/chaiverse_profiler_1734348916 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplod7gsr --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734348916 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734348916/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-1637-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-1637-v1-profiler
Service alexdaoud-trainer-bagir-1637-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.42s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-1637-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.24s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-1637-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-1637-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-1637-v1-profiler ready after 30.087905406951904s
Pipeline stage MKMLProfilerDeployer completed in 30.43s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo5psfr:/code/chaiverse_profiler_1734349663 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo5psfr --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734349663 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734349663/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo5psfr:/code/chaiverse_profiler_1734352431 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-baae24774ae9a07f28ed4e9b7f9aaec573-deplo5psfr --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734352431 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734352431/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-1637-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-1637-v1-profiler
Service alexdaoud-trainer-bagir-1637-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.56s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_1637_v1 status is now inactive due to auto deactivation removed underperforming models