developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-12-2_v1
model_name: 2025-07-12_2
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-13T02:06:05+00:00
num_battles: 9415
num_wins: 3630
celo_rating: 1208.3
family_friendly_score: 0.4302
family_friendly_standard_error: 0.007001827761377739
submission_type: basic
model_repo: AlbertWang8192/2025-07-12_2
model_architecture: MistralForCausalLM
model_num_parameters: 12772090880.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.596391597245557, 'latency_mean': 1.6766461443901062, 'latency_p50': 1.6626996994018555, 'latency_p90': 1.8720259189605712}, {'batch_size': 3, 'throughput': 1.0734472467172886, 'latency_mean': 2.7861065137386323, 'latency_p50': 2.77853524684906, 'latency_p90': 3.10543200969696}, {'batch_size': 5, 'throughput': 1.2809682885734681, 'latency_mean': 3.8876931965351105, 'latency_p50': 3.883100390434265, 'latency_p90': 4.32555124759674}, {'batch_size': 6, 'throughput': 1.3478139998852, 'latency_mean': 4.42831827878952, 'latency_p50': 4.455717206001282, 'latency_p90': 4.9256432056427}, {'batch_size': 8, 'throughput': 1.4141337089405723, 'latency_mean': 5.627452704906464, 'latency_p50': 5.62130069732666, 'latency_p90': 6.350663542747498}, {'batch_size': 10, 'throughput': 1.4348195321475417, 'latency_mean': 6.912261792421341, 'latency_p50': 6.989753007888794, 'latency_p90': 7.700507664680481}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-12_2
is_internal_developer: False
language_model: AlbertWang8192/2025-07-12_2
model_size: 13B
ranking_group: single
throughput_3p7s: 1.26
us_pacific_date: 2025-07-12
win_ratio: 0.385554965480616
generation_params: {'temperature': 0.6, 'top_p': 0.98, 'min_p': 0.05, 'top_k': 40, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_start|>', '<|im_end|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-12-2-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-12-2-v1-mkmlizer to finish
albertwang8192-2025-07-12-2-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-2-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-12-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-2-v1-mkmlizer: Downloaded to shared memory in 56.183s
albertwang8192-2025-07-12-2-v1-mkmlizer: Checking if AlbertWang8192/2025-07-12_2 already exists in ChaiML
albertwang8192-2025-07-12-2-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:03<00:17, 3.56s/it] 33%|███▎ | 2/6 [00:07<00:14, 3.57s/it] 50%|█████ | 3/6 [00:10<00:10, 3.52s/it] 67%|██████▋ | 4/6 [00:14<00:06, 3.49s/it] 83%|████████▎ | 5/6 [00:17<00:03, 3.50s/it] 100%|██████████| 6/6 [00:18<00:00, 2.71s/it] 100%|██████████| 6/6 [00:18<00:00, 3.12s/it]
albertwang8192-2025-07-12-2-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp769juqcb, device:0
albertwang8192-2025-07-12-2-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-12-2-v1-mkmlizer: quantized model in 30.481s
albertwang8192-2025-07-12-2-v1-mkmlizer: Processed model AlbertWang8192/2025-07-12_2 in 130.592s
albertwang8192-2025-07-12-2-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-12-2-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-12-2-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-12-2-v1/nvidia
albertwang8192-2025-07-12-2-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-2-v1/nvidia/config.json
albertwang8192-2025-07-12-2-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-2-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-12-2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-2-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-12-2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-2-v1/nvidia/tokenizer.json
albertwang8192-2025-07-12-2-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.84it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 48.07it/s] Loading 0: 5%|▍ | 18/363 [00:00<00:07, 48.30it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 39.96it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 45.58it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 42.37it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 41.71it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:06, 46.16it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:06, 45.90it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:06, 49.14it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:09, 30.49it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 36.58it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 38.93it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 34.57it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 41.53it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 42.06it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 42.78it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 43.92it/s] Loading 0: 30%|███ | 110/363 [00:02<00:06, 41.08it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 41.60it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:06, 40.06it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 42.32it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 41.81it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 41.93it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 43.62it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:07, 28.12it/s] Loading 0: 41%|████ | 149/363 [00:03<00:07, 28.31it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 35.99it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 37.18it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 38.15it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 40.30it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 34.80it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 41.68it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 41.45it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:04, 41.38it/s] Loading 0: 55%|█████▍ | 198/363 [00:04<00:03, 43.41it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 36.13it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 43.14it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 42.82it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 44.15it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:04, 28.12it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 30.07it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 37.16it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 38.61it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.37it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 41.63it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 35.31it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 42.29it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 42.17it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 42.65it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 44.18it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 37.11it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 43.58it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.43it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 43.92it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 24.04it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 23.89it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 26.15it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 31.59it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 33.34it/s] Loading 0: 91%|█████████ | 330/363 [00:08<00:00, 33.06it/s] Loading 0: 93%|█████████▎| 337/363 [00:08<00:00, 40.75it/s] Loading 0: 94%|█████████▍| 342/363 [00:08<00:00, 41.12it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 41.67it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 42.88it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 34.92it/s]
Job albertwang8192-2025-07-12-2-v1-mkmlizer completed after 157.42s with status: succeeded
Stopping job with name albertwang8192-2025-07-12-2-v1-mkmlizer
Pipeline stage MKMLizer completed in 157.99s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-12-2-v1
Waiting for inference service albertwang8192-2025-07-12-2-v1 to be ready
Inference service albertwang8192-2025-07-12-2-v1 ready after 220.7501232624054s
Pipeline stage MKMLDeployer completed in 221.36s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.1964175701141357s
Received healthy response to inference request in 1.9349045753479004s
Received healthy response to inference request in 1.5157246589660645s
Received healthy response to inference request in 1.6417698860168457s
Received healthy response to inference request in 1.5404202938079834s
5 requests
0 failed requests
5th percentile: 1.5206637859344483
10th percentile: 1.5256029129028321
20th percentile: 1.5354811668395996
30th percentile: 1.560690212249756
40th percentile: 1.6012300491333007
50th percentile: 1.6417698860168457
60th percentile: 1.7590237617492677
70th percentile: 1.8762776374816894
80th percentile: 1.9872071743011475
90th percentile: 2.0918123722076416
95th percentile: 2.1441149711608887
99th percentile: 2.1859570503234864
mean time: 1.765847396850586
Pipeline stage StressChecker completed in 10.36s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.79s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.86s
Shutdown handler de-registered
albertwang8192-2025-07-12-2_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-12-2-v1-profiler
Waiting for inference service albertwang8192-2025-07-12-2-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3826.20s
Shutdown handler de-registered
albertwang8192-2025-07-12-2_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-12-2_v1 status is now torndown due to DeploymentManager action