developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-12-1_v1
model_name: 2025-07-12_1
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-13T01:01:40+00:00
num_battles: 10962
num_wins: 5282
celo_rating: 1269.99
family_friendly_score: 0.5434
family_friendly_standard_error: 0.007044379887541557
submission_type: basic
model_repo: AlbertWang8192/2025-07-12_1
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5832221373247155, 'latency_mean': 1.714431208372116, 'latency_p50': 1.7059625387191772, 'latency_p90': 1.9005014657974244}, {'batch_size': 3, 'throughput': 1.0476905626555566, 'latency_mean': 2.859222424030304, 'latency_p50': 2.862221360206604, 'latency_p90': 3.1638021230697633}, {'batch_size': 5, 'throughput': 1.239045833346713, 'latency_mean': 4.01712690114975, 'latency_p50': 4.0510125160217285, 'latency_p90': 4.490888738632202}, {'batch_size': 6, 'throughput': 1.3085873236752372, 'latency_mean': 4.569158272743225, 'latency_p50': 4.534668564796448, 'latency_p90': 5.14810037612915}, {'batch_size': 8, 'throughput': 1.3446805933312582, 'latency_mean': 5.913562208414078, 'latency_p50': 5.888045072555542, 'latency_p90': 6.689422154426574}, {'batch_size': 10, 'throughput': 1.3806637776313724, 'latency_mean': 7.185153188705445, 'latency_p50': 7.21935498714447, 'latency_p90': 8.0721985578537}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-12_1
is_internal_developer: False
language_model: AlbertWang8192/2025-07-12_1
model_size: 13B
ranking_group: single
throughput_3p7s: 1.2
us_pacific_date: 2025-07-12
win_ratio: 0.4818463783981025
generation_params: {'temperature': 0.6, 'top_p': 0.98, 'min_p': 0.05, 'top_k': 40, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_start|>', '<|im_end|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-12-1-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-12-1-v1-mkmlizer to finish
albertwang8192-2025-07-12-1-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-12-1-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-12-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-12-1-v1-mkmlizer: Downloaded to shared memory in 56.542s
albertwang8192-2025-07-12-1-v1-mkmlizer: Checking if AlbertWang8192/2025-07-12_1 already exists in ChaiML
albertwang8192-2025-07-12-1-v1-mkmlizer: Creating repo ChaiML/2025-07-12_1 and uploading /tmp/tmp3jq96svw to it
albertwang8192-2025-07-12-1-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:03<00:18, 3.70s/it] 33%|███▎ | 2/6 [00:07<00:14, 3.66s/it] 50%|█████ | 3/6 [00:12<00:12, 4.26s/it] 67%|██████▋ | 4/6 [00:15<00:07, 3.98s/it] 83%|████████▎ | 5/6 [00:24<00:05, 5.61s/it] 100%|██████████| 6/6 [00:25<00:00, 4.13s/it] 100%|██████████| 6/6 [00:25<00:00, 4.27s/it]
albertwang8192-2025-07-12-1-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp3jq96svw, device:0
albertwang8192-2025-07-12-1-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-12-1-v1-mkmlizer: quantized model in 29.887s
albertwang8192-2025-07-12-1-v1-mkmlizer: Processed model AlbertWang8192/2025-07-12_1 in 137.221s
albertwang8192-2025-07-12-1-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-12-1-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-12-1-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-12-1-v1/nvidia
albertwang8192-2025-07-12-1-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-1-v1/nvidia/config.json
albertwang8192-2025-07-12-1-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-1-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-12-1-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-12-1-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-12-1-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-12-1-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-12-1-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:10, 33.20it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 52.34it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 45.63it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 44.30it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 50.36it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 46.03it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 44.73it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 49.63it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 45.88it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 35.70it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:08, 34.95it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 41.30it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 39.94it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 40.34it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 45.22it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 42.60it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:06, 42.19it/s] Loading 0: 29%|██▉ | 107/363 [00:02<00:05, 46.43it/s] Loading 0: 31%|███ | 112/363 [00:02<00:05, 47.15it/s] Loading 0: 32%|███▏ | 117/363 [00:02<00:05, 45.13it/s] Loading 0: 34%|███▍ | 123/363 [00:02<00:05, 42.58it/s] Loading 0: 35%|███▌ | 128/363 [00:02<00:05, 41.78it/s] Loading 0: 37%|███▋ | 134/363 [00:03<00:05, 45.67it/s] Loading 0: 38%|███▊ | 139/363 [00:03<00:04, 45.84it/s] Loading 0: 40%|███▉ | 144/363 [00:03<00:07, 28.87it/s] Loading 0: 41%|████ | 149/363 [00:03<00:06, 31.26it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 38.41it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 39.08it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 39.51it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 41.36it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 35.25it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 42.26it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 41.96it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:04, 42.32it/s] Loading 0: 55%|█████▍ | 198/363 [00:04<00:03, 43.43it/s] Loading 0: 56%|█████▌ | 203/363 [00:04<00:04, 35.67it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 42.10it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 41.08it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 42.74it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:05, 27.49it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 30.07it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 37.41it/s] Loading 0: 67%|██████▋ | 242/363 [00:05<00:03, 39.28it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.92it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 39.08it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 38.91it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 42.36it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 41.77it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 41.97it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:01, 43.71it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 35.40it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 41.29it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 41.14it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 41.93it/s] Loading 0: 84%|████████▍ | 306/363 [00:07<00:02, 23.90it/s] Loading 0: 85%|████████▌ | 310/363 [00:07<00:02, 25.24it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 27.85it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 33.57it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 35.41it/s] Loading 0: 91%|█████████ | 331/363 [00:08<00:00, 37.07it/s] Loading 0: 93%|█████████▎| 338/363 [00:08<00:00, 42.95it/s] Loading 0: 95%|█████████▍| 344/363 [00:08<00:00, 41.05it/s] Loading 0: 96%|█████████▌| 349/363 [00:08<00:00, 41.08it/s] Loading 0: 98%|█████████▊| 356/363 [00:08<00:00, 46.00it/s] Loading 0: 100%|█████████▉| 362/363 [00:09<00:00, 43.30it/s]
Job albertwang8192-2025-07-12-1-v1-mkmlizer completed after 157.8s with status: succeeded
Stopping job with name albertwang8192-2025-07-12-1-v1-mkmlizer
Pipeline stage MKMLizer completed in 158.30s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-12-1-v1
Waiting for inference service albertwang8192-2025-07-12-1-v1 to be ready
Inference service albertwang8192-2025-07-12-1-v1 ready after 220.86828446388245s
Pipeline stage MKMLDeployer completed in 221.72s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.8353569507598877s
Received healthy response to inference request in 1.6547021865844727s
Received healthy response to inference request in 1.8116490840911865s
Received healthy response to inference request in 1.7339990139007568s
{"detail":"HTTPConnectionPool(host='albertwang8192-2025-07-12-1-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Max retries exceeded with url: /v1/models/GPT-J-6B-lit-v2:predict (Caused by ConnectTimeoutError(<urllib3.connection.HTTPConnection object at 0x7259a47305d0>, 'Connection to albertwang8192-2025-07-12-1-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com timed out. (connect timeout=12.0)'))"}
Received unhealthy response to inference request!
5 requests
1 failed requests
5th percentile: 1.6705615520477295
10th percentile: 1.6864209175109863
20th percentile: 1.7181396484375
30th percentile: 1.7495290279388427
40th percentile: 1.7805890560150146
50th percentile: 1.8116490840911865
60th percentile: 2.2211322307586667
70th percentile: 2.6306153774261474
80th percentile: 4.727741432189943
90th percentile: 8.51251039505005
95th percentile: 10.404894876480101
99th percentile: 11.918802461624145
mean time: 4.066597318649292
%s, retrying in %s seconds...
Received healthy response to inference request in 1.8582496643066406s
Received healthy response to inference request in 1.5765109062194824s
Received healthy response to inference request in 1.8336191177368164s
Received healthy response to inference request in 1.6758058071136475s
Received healthy response to inference request in 1.7165415287017822s
5 requests
0 failed requests
5th percentile: 1.5963698863983153
10th percentile: 1.6162288665771485
20th percentile: 1.6559468269348145
30th percentile: 1.6839529514312743
40th percentile: 1.7002472400665283
50th percentile: 1.7165415287017822
60th percentile: 1.7633725643157958
70th percentile: 1.8102035999298096
80th percentile: 1.8385452270507812
90th percentile: 1.848397445678711
95th percentile: 1.8533235549926759
99th percentile: 1.8572644424438476
mean time: 1.732145404815674
Pipeline stage StressChecker completed in 31.44s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.67s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 1.08s
Shutdown handler de-registered
albertwang8192-2025-07-12-1_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3135.70s
Shutdown handler de-registered
albertwang8192-2025-07-12-1_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-12-1_v1 status is now torndown due to DeploymentManager action