developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-9_v1
model_name: 2025-07-11_9
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T02:14:16+00:00
num_battles: 8427
num_wins: 3905
celo_rating: 1269.89
family_friendly_score: 0.5246
family_friendly_standard_error: 0.007062504371680062
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_9
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.589619401376762, 'latency_mean': 1.6958218836784362, 'latency_p50': 1.6946861743927002, 'latency_p90': 1.865909957885742}, {'batch_size': 3, 'throughput': 1.0458090767803354, 'latency_mean': 2.861226918697357, 'latency_p50': 2.8536189794540405, 'latency_p90': 3.1669585943222045}, {'batch_size': 5, 'throughput': 1.2449895437214589, 'latency_mean': 3.995278843641281, 'latency_p50': 3.9632521867752075, 'latency_p90': 4.484055924415588}, {'batch_size': 6, 'throughput': 1.3146741989969626, 'latency_mean': 4.541727790832519, 'latency_p50': 4.573469519615173, 'latency_p90': 5.024684476852417}, {'batch_size': 8, 'throughput': 1.3701701029296065, 'latency_mean': 5.7973538541793825, 'latency_p50': 5.758425712585449, 'latency_p90': 6.594542026519775}, {'batch_size': 10, 'throughput': 1.3968538939161799, 'latency_mean': 7.103650979995727, 'latency_p50': 7.1286197900772095, 'latency_p90': 7.962387156486511}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_9
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_9
model_size: 13B
ranking_group: single
throughput_3p7s: 1.21
us_pacific_date: 2025-07-11
win_ratio: 0.46339147976741424
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_start|>', '<|im_end|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-9-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-11-9-v1-mkmlizer to finish
albertwang8192-2025-07-11-9-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-9-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-9-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-9-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-9-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-9-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-9-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-9-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-9-v1-mkmlizer: Downloaded to shared memory in 44.676s
albertwang8192-2025-07-11-9-v1-mkmlizer: Checking if AlbertWang8192/2025-07-11_9 already exists in ChaiML
albertwang8192-2025-07-11-9-v1-mkmlizer: Creating repo ChaiML/2025-07-11_9 and uploading /tmp/tmpvmztuube to it
albertwang8192-2025-07-11-9-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:08<00:41, 8.33s/it] 33%|███▎ | 2/6 [00:15<00:30, 7.57s/it] 50%|█████ | 3/6 [00:22<00:21, 7.14s/it] 67%|██████▋ | 4/6 [00:30<00:15, 7.58s/it] 83%|████████▎ | 5/6 [00:35<00:06, 6.62s/it] 100%|██████████| 6/6 [00:36<00:00, 4.76s/it] 100%|██████████| 6/6 [00:36<00:00, 6.05s/it]
albertwang8192-2025-07-11-9-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpvmztuube, device:0
albertwang8192-2025-07-11-9-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-9-v1-mkmlizer: quantized model in 30.415s
albertwang8192-2025-07-11-9-v1-mkmlizer: Processed model AlbertWang8192/2025-07-11_9 in 137.216s
albertwang8192-2025-07-11-9-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-9-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-9-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-9-v1/nvidia
albertwang8192-2025-07-11-9-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-9-v1/nvidia/config.json
albertwang8192-2025-07-11-9-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-9-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-9-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-9-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-9-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-9-v1/nvidia/tokenizer.json
albertwang8192-2025-07-11-9-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-9-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-9-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.77it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 48.75it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:08, 43.00it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 41.63it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 47.16it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 43.39it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 42.15it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 46.73it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:07, 43.71it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 45.21it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 28.08it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:08, 34.37it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 37.13it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 33.22it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 39.63it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 39.50it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 39.28it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:06, 40.84it/s] Loading 0: 30%|███ | 109/363 [00:02<00:05, 43.03it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:06, 36.83it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:07, 33.34it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 40.57it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 40.35it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 40.89it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 42.01it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 24.27it/s] Loading 0: 41%|████ | 149/363 [00:04<00:08, 24.95it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:06, 32.11it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 34.42it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 35.57it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:05, 37.95it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 32.78it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 39.76it/s] Loading 0: 52%|█████▏ | 188/363 [00:05<00:04, 38.72it/s] Loading 0: 53%|█████▎ | 193/363 [00:05<00:04, 39.46it/s] Loading 0: 55%|█████▍ | 198/363 [00:05<00:03, 41.77it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 34.81it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 41.50it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 41.72it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 42.83it/s] Loading 0: 62%|██████▏ | 225/363 [00:06<00:05, 25.79it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 28.49it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 35.55it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 37.04it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:03, 38.35it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 41.06it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 35.29it/s] Loading 0: 73%|███████▎ | 264/363 [00:07<00:02, 41.89it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 42.09it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 42.22it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 44.17it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 36.43it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 42.31it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.61it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 43.19it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 23.39it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 24.60it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 27.08it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 32.65it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 34.44it/s] Loading 0: 91%|█████████ | 330/363 [00:09<00:00, 33.91it/s] Loading 0: 93%|█████████▎| 337/363 [00:09<00:00, 41.91it/s] Loading 0: 94%|█████████▍| 342/363 [00:09<00:00, 41.77it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 41.97it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 43.79it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 36.90it/s]
Job albertwang8192-2025-07-11-9-v1-mkmlizer completed after 166.72s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-9-v1-mkmlizer
Pipeline stage MKMLizer completed in 167.22s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-9-v1
Waiting for inference service albertwang8192-2025-07-11-9-v1 to be ready
Inference service albertwang8192-2025-07-11-9-v1 ready after 201.3189013004303s
Pipeline stage MKMLDeployer completed in 201.92s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.2875070571899414s
Received healthy response to inference request in 1.809556007385254s
Received healthy response to inference request in 1.6143536567687988s
Received healthy response to inference request in 1.697056770324707s
Received healthy response to inference request in 1.5242950916290283s
5 requests
0 failed requests
5th percentile: 1.5423068046569823
10th percentile: 1.5603185176849366
20th percentile: 1.5963419437408448
30th percentile: 1.6308942794799806
40th percentile: 1.6639755249023438
50th percentile: 1.697056770324707
60th percentile: 1.7420564651489259
70th percentile: 1.7870561599731445
80th percentile: 1.9051462173461915
90th percentile: 2.0963266372680662
95th percentile: 2.191916847229004
99th percentile: 2.2683890151977537
mean time: 1.786553716659546
Pipeline stage StressChecker completed in 10.38s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.63s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.73s
Shutdown handler de-registered
albertwang8192-2025-07-11-9_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-11-9-v1-profiler
Waiting for inference service albertwang8192-2025-07-11-9-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5040.12s
Shutdown handler de-registered
albertwang8192-2025-07-11-9_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-9_v1 status is now torndown due to DeploymentManager action