developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-8_v1
model_name: 2025-07-11_8
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T00:29:56+00:00
num_battles: 8891
num_wins: 4301
celo_rating: 1271.52
family_friendly_score: 0.5292
family_friendly_standard_error: 0.007058999362515909
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_8
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5852319580553104, 'latency_mean': 1.708605875968933, 'latency_p50': 1.7076399326324463, 'latency_p90': 1.8745662689208984}, {'batch_size': 3, 'throughput': 1.0479024502210958, 'latency_mean': 2.8538686287403108, 'latency_p50': 2.854184150695801, 'latency_p90': 3.1758473396301268}, {'batch_size': 5, 'throughput': 1.2453071334398245, 'latency_mean': 4.008280619382858, 'latency_p50': 4.036166667938232, 'latency_p90': 4.5594573497772215}, {'batch_size': 6, 'throughput': 1.2992881945490202, 'latency_mean': 4.590874302387237, 'latency_p50': 4.591545462608337, 'latency_p90': 5.066047358512878}, {'batch_size': 8, 'throughput': 1.3636416032003318, 'latency_mean': 5.827459888458252, 'latency_p50': 5.838019847869873, 'latency_p90': 6.515421724319458}, {'batch_size': 10, 'throughput': 1.3903378259470278, 'latency_mean': 7.131646395921707, 'latency_p50': 7.152897000312805, 'latency_p90': 8.13582181930542}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_8
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_8
model_size: 13B
ranking_group: single
throughput_3p7s: 1.21
us_pacific_date: 2025-07-11
win_ratio: 0.4837476099426386
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_start|>', '<|im_end|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-8-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-11-8-v1-mkmlizer to finish
albertwang8192-2025-07-11-8-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-8-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-8-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-8-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-8-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-8-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-8-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-8-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-8-v1-mkmlizer: Downloaded to shared memory in 59.755s
albertwang8192-2025-07-11-8-v1-mkmlizer: Checking if AlbertWang8192/2025-07-11_8 already exists in ChaiML
albertwang8192-2025-07-11-8-v1-mkmlizer: Creating repo ChaiML/2025-07-11_8 and uploading /tmp/tmpochfghnk to it
albertwang8192-2025-07-11-8-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:08<00:42, 8.54s/it] 33%|███▎ | 2/6 [00:13<00:26, 6.62s/it] 50%|█████ | 3/6 [00:22<00:22, 7.42s/it] 67%|██████▋ | 4/6 [00:26<00:12, 6.03s/it] 83%|████████▎ | 5/6 [00:29<00:05, 5.18s/it] 100%|██████████| 6/6 [00:30<00:00, 3.78s/it] 100%|██████████| 6/6 [00:30<00:00, 5.14s/it]
albertwang8192-2025-07-11-8-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpochfghnk, device:0
albertwang8192-2025-07-11-8-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Retrying (%r) after connection broken by '%r': %s
albertwang8192-2025-07-11-8-v1-mkmlizer: quantized model in 30.537s
albertwang8192-2025-07-11-8-v1-mkmlizer: Processed model AlbertWang8192/2025-07-11_8 in 146.751s
albertwang8192-2025-07-11-8-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-8-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-8-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-8-v1/nvidia
albertwang8192-2025-07-11-8-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-8-v1/nvidia/config.json
albertwang8192-2025-07-11-8-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-8-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-8-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-8-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-8-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-8-v1/nvidia/tokenizer.json
albertwang8192-2025-07-11-8-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:10, 32.86it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.49it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 45.08it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 43.29it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 48.73it/s] Loading 0: 10%|▉ | 36/363 [00:00<00:06, 48.64it/s] Loading 0: 11%|█▏ | 41/363 [00:00<00:08, 38.92it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:06, 45.88it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:06, 45.32it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:06, 48.85it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 29.24it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:08, 35.31it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 38.01it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 34.12it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 40.86it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 41.29it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 42.06it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 43.60it/s] Loading 0: 30%|███ | 110/363 [00:02<00:06, 41.17it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 42.28it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 40.86it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 42.03it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 41.74it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 41.95it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 43.31it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 27.09it/s] Loading 0: 41%|████ | 149/363 [00:03<00:07, 27.39it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 34.59it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 36.52it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 38.39it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 40.91it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 34.62it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 41.83it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 42.28it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:04, 42.25it/s] Loading 0: 55%|█████▍ | 198/363 [00:04<00:03, 43.74it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 34.88it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 41.87it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 42.12it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 43.64it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:05, 26.79it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 29.40it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 36.46it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 37.51it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:03, 38.40it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 40.89it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 34.97it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 41.53it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 40.84it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 41.32it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 42.42it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 35.18it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 41.93it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.03it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 42.90it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 22.89it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 24.24it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 26.42it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 31.86it/s] Loading 0: 90%|████████▉ | 325/363 [00:08<00:01, 35.70it/s] Loading 0: 91%|█████████ | 330/363 [00:08<00:01, 31.93it/s] Loading 0: 93%|█████████▎| 337/363 [00:08<00:00, 39.22it/s] Loading 0: 94%|█████████▍| 342/363 [00:09<00:00, 39.28it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 40.72it/s] Loading 0: 97%|█████████▋| 353/363 [00:09<00:00, 39.49it/s] Loading 0: 99%|█████████▊| 358/363 [00:09<00:00, 38.83it/s]
Job albertwang8192-2025-07-11-8-v1-mkmlizer completed after 177.65s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-8-v1-mkmlizer
Pipeline stage MKMLizer completed in 178.15s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-8-v1
Waiting for inference service albertwang8192-2025-07-11-8-v1 to be ready
Inference service albertwang8192-2025-07-11-8-v1 ready after 200.7411241531372s
Pipeline stage MKMLDeployer completed in 201.26s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.2037107944488525s
Received healthy response to inference request in 1.7863743305206299s
Received healthy response to inference request in 1.56742262840271s
Received healthy response to inference request in 1.599421739578247s
Received healthy response to inference request in 1.700962781906128s
5 requests
0 failed requests
5th percentile: 1.5738224506378173
10th percentile: 1.5802222728729247
20th percentile: 1.5930219173431397
30th percentile: 1.6197299480438232
40th percentile: 1.6603463649749757
50th percentile: 1.700962781906128
60th percentile: 1.7351274013519287
70th percentile: 1.7692920207977294
80th percentile: 1.8698416233062745
90th percentile: 2.0367762088775634
95th percentile: 2.1202435016632077
99th percentile: 2.1870173358917238
mean time: 1.7715784549713134
Pipeline stage StressChecker completed in 10.41s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.84s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.87s
Shutdown handler de-registered
albertwang8192-2025-07-11-8_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-11-8-v1-profiler
Waiting for inference service albertwang8192-2025-07-11-8-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 4323.04s
Shutdown handler de-registered
albertwang8192-2025-07-11-8_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-8_v1 status is now torndown due to DeploymentManager action