developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-7_v9
model_name: 2025-07-11_7_v9
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T18:28:47+00:00
num_battles: 7208
num_wins: 3580
celo_rating: 1270.78
family_friendly_score: 0.5532
family_friendly_standard_error: 0.0070309282459715084
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_7
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5894292159218399, 'latency_mean': 1.6964302515983583, 'latency_p50': 1.697015404701233, 'latency_p90': 1.8763538360595702}, {'batch_size': 3, 'throughput': 1.0558465567501651, 'latency_mean': 2.8357266318798064, 'latency_p50': 2.8346827030181885, 'latency_p90': 3.1045344352722166}, {'batch_size': 5, 'throughput': 1.2510021421933497, 'latency_mean': 3.979138756990433, 'latency_p50': 3.9648085832595825, 'latency_p90': 4.428705096244812}, {'batch_size': 6, 'throughput': 1.3061313340911844, 'latency_mean': 4.56288130402565, 'latency_p50': 4.588587522506714, 'latency_p90': 5.077271366119385}, {'batch_size': 8, 'throughput': 1.3721242069541926, 'latency_mean': 5.782471930980682, 'latency_p50': 5.793995022773743, 'latency_p90': 6.536129140853881}, {'batch_size': 10, 'throughput': 1.414423368826818, 'latency_mean': 7.0195848488807675, 'latency_p50': 7.023459196090698, 'latency_p90': 7.855610632896423}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_7_v9
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_7
model_size: 13B
ranking_group: single
throughput_3p7s: 1.22
us_pacific_date: 2025-07-12
win_ratio: 0.49667036625971145
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 10, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_end|>', '<|im_start|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-7-v9-mkmlizer
Waiting for job on albertwang8192-2025-07-11-7-v9-mkmlizer to finish
albertwang8192-2025-07-11-7-v9-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v9-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-7-v9-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v9-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v9-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v9-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v9-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v9-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v9-mkmlizer: Downloaded to shared memory in 30.631s
albertwang8192-2025-07-11-7-v9-mkmlizer: Checking if AlbertWang8192/2025-07-11_7 already exists in ChaiML
albertwang8192-2025-07-11-7-v9-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpnbp2bbqb, device:0
albertwang8192-2025-07-11-7-v9-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-7-v9-mkmlizer: quantized model in 30.397s
albertwang8192-2025-07-11-7-v9-mkmlizer: Processed model AlbertWang8192/2025-07-11_7 in 61.172s
albertwang8192-2025-07-11-7-v9-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-7-v9-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-7-v9-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v9/nvidia
albertwang8192-2025-07-11-7-v9-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v9/nvidia/config.json
albertwang8192-2025-07-11-7-v9-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v9/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-7-v9-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v9/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-7-v9-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v9/nvidia/tokenizer.json
albertwang8192-2025-07-11-7-v9-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v9/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-7-v9-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.09it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 48.73it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 43.52it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 42.22it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 47.51it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 43.57it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 42.48it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 47.26it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:07, 43.63it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:09, 32.06it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:09, 31.70it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 37.88it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 40.14it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 34.47it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 41.47it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 41.49it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 42.05it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 43.58it/s] Loading 0: 30%|███ | 110/363 [00:02<00:06, 41.02it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 41.50it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:06, 39.54it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 41.36it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 39.94it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 39.90it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 42.16it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 26.13it/s] Loading 0: 41%|████ | 149/363 [00:03<00:07, 27.12it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:05, 34.69it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 36.70it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 38.11it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 40.85it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 35.02it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 42.50it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 42.92it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 42.64it/s] Loading 0: 55%|█████▍ | 198/363 [00:05<00:03, 44.44it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 36.43it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 41.73it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 41.73it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 43.65it/s] Loading 0: 62%|██████▏ | 225/363 [00:05<00:05, 26.67it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 29.26it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 36.35it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 38.03it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.40it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 41.55it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 35.23it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 42.42it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 42.84it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 42.37it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 43.26it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 36.64it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 43.14it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.58it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 44.18it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 22.90it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 23.86it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 25.48it/s] Loading 0: 88%|████████▊ | 319/363 [00:08<00:01, 29.73it/s] Loading 0: 89%|████████▉ | 323/363 [00:08<00:01, 31.28it/s] Loading 0: 90%|█████████ | 328/363 [00:08<00:00, 35.46it/s] Loading 0: 92%|█████████▏| 333/363 [00:08<00:00, 36.88it/s] Loading 0: 93%|█████████▎| 338/363 [00:08<00:00, 38.71it/s] Loading 0: 94%|█████████▍| 343/363 [00:09<00:00, 41.09it/s] Loading 0: 96%|█████████▌| 348/363 [00:09<00:00, 32.43it/s] Loading 0: 98%|█████████▊| 355/363 [00:09<00:00, 39.83it/s] Loading 0: 99%|█████████▉| 360/363 [00:09<00:00, 40.25it/s]
Job albertwang8192-2025-07-11-7-v9-mkmlizer completed after 85.62s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-7-v9-mkmlizer
Pipeline stage MKMLizer completed in 86.13s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-7-v9
Waiting for inference service albertwang8192-2025-07-11-7-v9 to be ready
Inference service albertwang8192-2025-07-11-7-v9 ready after 210.74964570999146s
Pipeline stage MKMLDeployer completed in 211.21s
run pipeline stage %s
Running pipeline stage StressChecker
HTTPConnectionPool(host='guanaco-submitter.guanaco-backend.k2.chaiverse.com', port=80): Read timed out. (read timeout=20)
Received unhealthy response to inference request!
Received healthy response to inference request in 2.6513712406158447s
Received healthy response to inference request in 1.8753418922424316s
Received healthy response to inference request in 1.5778777599334717s
Received healthy response to inference request in 1.8195850849151611s
5 requests
1 failed requests
5th percentile: 1.6262192249298095
10th percentile: 1.6745606899261474
20th percentile: 1.7712436199188233
30th percentile: 1.8307364463806153
40th percentile: 1.8530391693115233
50th percentile: 1.8753418922424316
60th percentile: 2.1857536315917967
70th percentile: 2.4961653709411618
80th percentile: 6.325829935073855
90th percentile: 13.67474732398987
95th percentile: 17.349206018447873
99th percentile: 20.288772974014282
mean time: 5.789568138122559
%s, retrying in %s seconds...
Received healthy response to inference request in 1.4572458267211914s
Received healthy response to inference request in 1.9818596839904785s
Received healthy response to inference request in 1.8017008304595947s
Received healthy response to inference request in 1.8409979343414307s
Received healthy response to inference request in 1.8788502216339111s
5 requests
0 failed requests
5th percentile: 1.526136827468872
10th percentile: 1.5950278282165526
20th percentile: 1.732809829711914
30th percentile: 1.8095602512359619
40th percentile: 1.8252790927886964
50th percentile: 1.8409979343414307
60th percentile: 1.8561388492584228
70th percentile: 1.871279764175415
80th percentile: 1.8994521141052245
90th percentile: 1.9406558990478515
95th percentile: 1.9612577915191651
99th percentile: 1.9777393054962158
mean time: 1.7921308994293212
Pipeline stage StressChecker completed in 40.69s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.72s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.62s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v9 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3543.58s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v9 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-7_v9 status is now torndown due to DeploymentManager action