developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-7_v5
model_name: 2025-07-11_7_v5
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T14:32:51+00:00
num_battles: 10733
num_wins: 5173
celo_rating: 1272.05
family_friendly_score: 0.5429999999999999
family_friendly_standard_error: 0.007044870474323854
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_7
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5909028783231713, 'latency_mean': 1.6921810185909272, 'latency_p50': 1.6850624084472656, 'latency_p90': 1.8504127502441405}, {'batch_size': 3, 'throughput': 1.0538576870710437, 'latency_mean': 2.840249810218811, 'latency_p50': 2.842268228530884, 'latency_p90': 3.1187132358551026}, {'batch_size': 5, 'throughput': 1.2600163078573403, 'latency_mean': 3.954335050582886, 'latency_p50': 3.950960159301758, 'latency_p90': 4.418831753730774}, {'batch_size': 6, 'throughput': 1.3351726523693388, 'latency_mean': 4.472847038507462, 'latency_p50': 4.442794919013977, 'latency_p90': 5.026598262786865}, {'batch_size': 8, 'throughput': 1.3800648585774513, 'latency_mean': 5.758860546350479, 'latency_p50': 5.767386198043823, 'latency_p90': 6.4652445077896115}, {'batch_size': 10, 'throughput': 1.4201016739078278, 'latency_mean': 6.992232266664505, 'latency_p50': 6.955225944519043, 'latency_p90': 7.936249160766601}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_7_v5
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_7
model_size: 13B
ranking_group: single
throughput_3p7s: 1.23
us_pacific_date: 2025-07-12
win_ratio: 0.4819714897978198
generation_params: {'temperature': 0.6, 'top_p': 0.9, 'min_p': 0.01, 'top_k': 50, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_end|>', '<|im_start|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-7-v5-mkmlizer
Waiting for job on albertwang8192-2025-07-11-7-v5-mkmlizer to finish
albertwang8192-2025-07-11-7-v5-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v5-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-7-v5-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v5-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v5-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v5-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v5-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v5-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v5-mkmlizer: Downloaded to shared memory in 30.803s
albertwang8192-2025-07-11-7-v5-mkmlizer: Checking if AlbertWang8192/2025-07-11_7 already exists in ChaiML
albertwang8192-2025-07-11-7-v5-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpwjjc_xr5, device:0
albertwang8192-2025-07-11-7-v5-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-7-v5-mkmlizer: quantized model in 30.726s
albertwang8192-2025-07-11-7-v5-mkmlizer: Processed model AlbertWang8192/2025-07-11_7 in 61.617s
albertwang8192-2025-07-11-7-v5-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-7-v5-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-7-v5-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v5/nvidia
albertwang8192-2025-07-11-7-v5-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v5/nvidia/config.json
albertwang8192-2025-07-11-7-v5-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v5/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-7-v5-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v5/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-7-v5-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v5/nvidia/tokenizer.json
albertwang8192-2025-07-11-7-v5-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v5/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-7-v5-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.14it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 48.40it/s] Loading 0: 5%|▍ | 18/363 [00:00<00:07, 48.30it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 39.89it/s] Loading 0: 8%|▊ | 30/363 [00:00<00:07, 45.17it/s] Loading 0: 10%|▉ | 35/363 [00:00<00:07, 44.40it/s] Loading 0: 11%|█ | 40/363 [00:00<00:07, 43.78it/s] Loading 0: 12%|█▏ | 45/363 [00:01<00:07, 44.18it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:08, 36.29it/s] Loading 0: 16%|█▌ | 57/363 [00:01<00:06, 44.24it/s] Loading 0: 17%|█▋ | 62/363 [00:01<00:10, 30.03it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:09, 31.01it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:08, 35.68it/s] Loading 0: 21%|██ | 77/363 [00:01<00:07, 38.59it/s] Loading 0: 23%|██▎ | 82/363 [00:02<00:08, 33.92it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 41.01it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 41.23it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 41.71it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 43.32it/s] Loading 0: 30%|███ | 110/363 [00:02<00:06, 40.05it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:06, 41.05it/s] Loading 0: 33%|███▎ | 120/363 [00:03<00:06, 38.89it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 40.59it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 39.90it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 40.29it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 42.21it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 26.06it/s] Loading 0: 41%|████ | 149/363 [00:04<00:07, 26.76it/s] Loading 0: 42%|████▏ | 154/363 [00:04<00:06, 31.26it/s] Loading 0: 44%|████▎ | 158/363 [00:04<00:06, 30.76it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 38.27it/s] Loading 0: 47%|████▋ | 170/363 [00:04<00:04, 39.06it/s] Loading 0: 48%|████▊ | 175/363 [00:04<00:04, 39.75it/s] Loading 0: 50%|████▉ | 180/363 [00:04<00:04, 41.95it/s] Loading 0: 51%|█████ | 185/363 [00:04<00:05, 35.12it/s] Loading 0: 53%|█████▎ | 192/363 [00:05<00:04, 41.99it/s] Loading 0: 54%|█████▍ | 197/363 [00:05<00:03, 41.80it/s] Loading 0: 56%|█████▌ | 202/363 [00:05<00:03, 41.14it/s] Loading 0: 57%|█████▋ | 207/363 [00:05<00:03, 42.64it/s] Loading 0: 58%|█████▊ | 212/363 [00:05<00:04, 34.08it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:03, 38.96it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 29.98it/s] Loading 0: 63%|██████▎ | 227/363 [00:06<00:04, 31.25it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 30.67it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 35.98it/s] Loading 0: 66%|██████▋ | 241/363 [00:06<00:03, 34.62it/s] Loading 0: 68%|██████▊ | 246/363 [00:06<00:03, 37.69it/s] Loading 0: 69%|██████▉ | 250/363 [00:06<00:03, 37.06it/s] Loading 0: 70%|███████ | 255/363 [00:06<00:02, 39.60it/s] Loading 0: 72%|███████▏ | 260/363 [00:06<00:02, 40.37it/s] Loading 0: 73%|███████▎ | 265/363 [00:07<00:02, 40.16it/s] Loading 0: 74%|███████▍ | 270/363 [00:07<00:02, 41.96it/s] Loading 0: 76%|███████▌ | 275/363 [00:07<00:02, 34.64it/s] Loading 0: 78%|███████▊ | 282/363 [00:07<00:01, 41.71it/s] Loading 0: 79%|███████▉ | 287/363 [00:07<00:01, 41.22it/s] Loading 0: 80%|████████ | 292/363 [00:07<00:01, 41.24it/s] Loading 0: 82%|████████▏ | 297/363 [00:07<00:01, 42.81it/s] Loading 0: 83%|████████▎ | 302/363 [00:07<00:01, 44.24it/s] Loading 0: 85%|████████▍ | 307/363 [00:08<00:02, 20.34it/s] Loading 0: 86%|████████▌ | 312/363 [00:08<00:02, 22.56it/s] Loading 0: 88%|████████▊ | 319/363 [00:08<00:01, 29.74it/s] Loading 0: 89%|████████▉ | 324/363 [00:08<00:01, 32.55it/s] Loading 0: 91%|█████████ | 329/363 [00:08<00:00, 35.12it/s] Loading 0: 92%|█████████▏| 334/363 [00:09<00:00, 37.65it/s] Loading 0: 93%|█████████▎| 339/363 [00:09<00:00, 33.14it/s] Loading 0: 95%|█████████▌| 346/363 [00:09<00:00, 40.49it/s] Loading 0: 97%|█████████▋| 351/363 [00:09<00:00, 40.59it/s] Loading 0: 98%|█████████▊| 356/363 [00:09<00:00, 41.43it/s] Loading 0: 99%|█████████▉| 361/363 [00:09<00:00, 43.02it/s]
Job albertwang8192-2025-07-11-7-v5-mkmlizer completed after 85.33s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-7-v5-mkmlizer
Pipeline stage MKMLizer completed in 85.83s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-7-v5
Waiting for inference service albertwang8192-2025-07-11-7-v5 to be ready
Retrying (%r) after connection broken by '%r': %s
Inference service albertwang8192-2025-07-11-7-v5 ready after 211.31605744361877s
Pipeline stage MKMLDeployer completed in 211.88s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.6719350814819336s
Received healthy response to inference request in 1.62447190284729s
Received healthy response to inference request in 1.9381451606750488s
Received healthy response to inference request in 1.7654433250427246s
Received healthy response to inference request in 1.8810176849365234s
5 requests
0 failed requests
5th percentile: 1.652666187286377
10th percentile: 1.6808604717254638
20th percentile: 1.7372490406036376
30th percentile: 1.7885581970214843
40th percentile: 1.834787940979004
50th percentile: 1.8810176849365234
60th percentile: 1.9038686752319336
70th percentile: 1.9267196655273438
80th percentile: 2.084903144836426
90th percentile: 2.37841911315918
95th percentile: 2.5251770973205563
99th percentile: 2.6425834846496583
mean time: 1.976202630996704
Pipeline stage StressChecker completed in 11.25s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.93s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.95s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v5 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5981.09s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v5 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-7_v5 status is now torndown due to DeploymentManager action