developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-7_v3
model_name: 2025-07-11_7_v3
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T14:30:27+00:00
num_battles: 8690
num_wins: 4179
celo_rating: 1271.22
family_friendly_score: 0.5476
family_friendly_standard_error: 0.007038952194751716
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_7
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5844584768953183, 'latency_mean': 1.7108610498905181, 'latency_p50': 1.7111541032791138, 'latency_p90': 1.8849950075149535}, {'batch_size': 3, 'throughput': 1.049814753851908, 'latency_mean': 2.850958148241043, 'latency_p50': 2.8577016592025757, 'latency_p90': 3.13472204208374}, {'batch_size': 5, 'throughput': 1.2530576992621847, 'latency_mean': 3.9641120374202727, 'latency_p50': 3.930416703224182, 'latency_p90': 4.418447518348693}, {'batch_size': 6, 'throughput': 1.3098388877531946, 'latency_mean': 4.560943905115128, 'latency_p50': 4.598960041999817, 'latency_p90': 5.131461977958679}, {'batch_size': 8, 'throughput': 1.3733984480684376, 'latency_mean': 5.792725168466568, 'latency_p50': 5.79697585105896, 'latency_p90': 6.5579674482345585}, {'batch_size': 10, 'throughput': 1.3948147568932696, 'latency_mean': 7.103303588628769, 'latency_p50': 7.1738340854644775, 'latency_p90': 7.9067772865295405}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_7_v3
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_7
model_size: 13B
ranking_group: single
throughput_3p7s: 1.22
us_pacific_date: 2025-07-12
win_ratio: 0.480897583429229
generation_params: {'temperature': 0.5, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_start|>', '<|im_end|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-7-v3-mkmlizer
Waiting for job on albertwang8192-2025-07-11-7-v3-mkmlizer to finish
albertwang8192-2025-07-11-7-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-7-v3-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v3-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v3-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v3-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v3-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v3-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v3-mkmlizer: Downloaded to shared memory in 29.742s
albertwang8192-2025-07-11-7-v3-mkmlizer: Checking if AlbertWang8192/2025-07-11_7 already exists in ChaiML
albertwang8192-2025-07-11-7-v3-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpan0e35wr, device:0
albertwang8192-2025-07-11-7-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-7-v3-mkmlizer: quantized model in 31.080s
albertwang8192-2025-07-11-7-v3-mkmlizer: Processed model AlbertWang8192/2025-07-11_7 in 60.906s
albertwang8192-2025-07-11-7-v3-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-7-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-7-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v3/nvidia
albertwang8192-2025-07-11-7-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v3/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-7-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v3/nvidia/config.json
albertwang8192-2025-07-11-7-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v3/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-7-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v3/nvidia/tokenizer.json
albertwang8192-2025-07-11-7-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v3/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-7-v3-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.50it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 48.57it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:08, 42.71it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 41.10it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 46.37it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 43.21it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 41.89it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 46.40it/s] Loading 0: 15%|█▍ | 54/363 [00:01<00:06, 47.15it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 43.45it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 28.40it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 33.96it/s] Loading 0: 21%|██ | 76/363 [00:01<00:08, 35.81it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 37.65it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:07, 39.27it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:08, 33.84it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:06, 41.23it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:06, 40.22it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:06, 42.45it/s] Loading 0: 31%|███ | 113/363 [00:02<00:06, 36.54it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:06, 36.74it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 43.26it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 42.55it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 42.32it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 43.80it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 26.68it/s] Loading 0: 41%|████ | 149/363 [00:03<00:07, 26.88it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:06, 34.23it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 35.83it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 36.74it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 39.13it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 33.16it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 39.60it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 39.58it/s] Loading 0: 53%|█████▎ | 193/363 [00:05<00:04, 40.17it/s] Loading 0: 55%|█████▍ | 198/363 [00:05<00:03, 42.16it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 34.32it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 40.72it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 40.81it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 42.41it/s] Loading 0: 62%|██████▏ | 225/363 [00:06<00:05, 26.46it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 28.78it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 35.44it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 36.63it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:03, 38.01it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 40.49it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 34.33it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 41.02it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 41.35it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 40.55it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:02, 40.94it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 34.31it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 41.06it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 41.15it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 42.06it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 19.16it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 20.90it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:02, 23.35it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 28.80it/s] Loading 0: 90%|████████▉ | 326/363 [00:09<00:01, 30.96it/s] Loading 0: 91%|█████████ | 330/363 [00:09<00:01, 31.05it/s] Loading 0: 93%|█████████▎| 337/363 [00:09<00:00, 38.97it/s] Loading 0: 94%|█████████▍| 342/363 [00:09<00:00, 39.47it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 40.54it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 42.36it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 36.14it/s]
Job albertwang8192-2025-07-11-7-v3-mkmlizer completed after 85.81s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-7-v3-mkmlizer
Pipeline stage MKMLizer completed in 86.38s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.20s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-7-v3
Waiting for inference service albertwang8192-2025-07-11-7-v3 to be ready
Inference service albertwang8192-2025-07-11-7-v3 ready after 210.84744668006897s
Pipeline stage MKMLDeployer completed in 211.35s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.86098313331604s
Received healthy response to inference request in 1.601372241973877s
Received healthy response to inference request in 1.5607707500457764s
Received healthy response to inference request in 1.82501220703125s
Received healthy response to inference request in 1.530888319015503s
5 requests
0 failed requests
5th percentile: 1.5368648052215577
10th percentile: 1.5428412914276124
20th percentile: 1.5547942638397216
30th percentile: 1.5688910484313965
40th percentile: 1.5851316452026367
50th percentile: 1.601372241973877
60th percentile: 1.690828227996826
70th percentile: 1.7802842140197754
80th percentile: 2.032206392288208
90th percentile: 2.4465947628021243
95th percentile: 2.653788948059082
99th percentile: 2.8195442962646484
mean time: 1.8758053302764892
Pipeline stage StressChecker completed in 11.14s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.74s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.84s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v3 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-11-7-v3-profiler
Waiting for inference service albertwang8192-2025-07-11-7-v3-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5639.34s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v3 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-7_v3 status is now torndown due to DeploymentManager action