developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-7_v13
model_name: 2025-07-11_7_V13
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-13T17:38:46+00:00
num_battles: 7071
num_wins: 3323
celo_rating: 1258.9
family_friendly_score: 0.5506
family_friendly_standard_error: 0.007034765667739047
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_7
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5916038487757854, 'latency_mean': 1.6901270592212676, 'latency_p50': 1.6857092380523682, 'latency_p90': 1.8725595235824586}, {'batch_size': 3, 'throughput': 1.0700659539801536, 'latency_mean': 2.793860011100769, 'latency_p50': 2.7825177907943726, 'latency_p90': 3.0506723403930662}, {'batch_size': 5, 'throughput': 1.2850960088481975, 'latency_mean': 3.87467467546463, 'latency_p50': 3.8711994886398315, 'latency_p90': 4.289100456237793}, {'batch_size': 6, 'throughput': 1.3460436449975417, 'latency_mean': 4.44067208647728, 'latency_p50': 4.447196364402771, 'latency_p90': 4.923447394371033}, {'batch_size': 8, 'throughput': 1.4030375397584418, 'latency_mean': 5.660957962274551, 'latency_p50': 5.65111517906189, 'latency_p90': 6.354231834411621}, {'batch_size': 10, 'throughput': 1.4448981230065097, 'latency_mean': 6.855191853046417, 'latency_p50': 6.834052324295044, 'latency_p90': 7.665913057327271}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_7_V13
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_7
model_size: 13B
ranking_group: single
throughput_3p7s: 1.26
us_pacific_date: 2025-07-13
win_ratio: 0.46994767359637957
generation_params: {'temperature': 0.6, 'top_p': 0.98, 'min_p': 0.05, 'top_k': 45, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_end|>', '<|im_start|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-7-v13-mkmlizer
Waiting for job on albertwang8192-2025-07-11-7-v13-mkmlizer to finish
albertwang8192-2025-07-11-7-v13-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v13-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-7-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
Failed to get response for submission albertwang8192-2025-07-13-1_v1: HTTPConnectionPool(host='albertwang8192-2025-07-13-1-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
albertwang8192-2025-07-11-7-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v13-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v13-mkmlizer: Downloaded to shared memory in 36.816s
albertwang8192-2025-07-11-7-v13-mkmlizer: Checking if AlbertWang8192/2025-07-11_7 already exists in ChaiML
albertwang8192-2025-07-11-7-v13-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpv5intpga, device:0
albertwang8192-2025-07-11-7-v13-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-7-v13-mkmlizer: quantized model in 38.689s
albertwang8192-2025-07-11-7-v13-mkmlizer: Processed model AlbertWang8192/2025-07-11_7 in 75.594s
albertwang8192-2025-07-11-7-v13-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-7-v13-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-7-v13-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v13/nvidia
albertwang8192-2025-07-11-7-v13-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v13/nvidia/tokenizer.json
albertwang8192-2025-07-11-7-v13-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:14, 25.49it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:08, 40.73it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:08, 39.75it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:08, 39.17it/s] Loading 0: 7%|▋ | 27/363 [00:00<00:08, 41.10it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:10, 31.95it/s] Loading 0: 11%|█ | 39/363 [00:01<00:08, 38.65it/s] Loading 0: 12%|█▏ | 44/363 [00:01<00:08, 37.78it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:08, 37.23it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:08, 37.18it/s] Loading 0: 16%|█▌ | 57/363 [00:01<00:08, 37.20it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:12, 23.89it/s] Loading 0: 18%|█▊ | 65/363 [00:02<00:12, 24.73it/s] Loading 0: 20%|█▉ | 71/363 [00:02<00:09, 30.83it/s] Loading 0: 21%|██ | 75/363 [00:02<00:09, 30.64it/s] Loading 0: 22%|██▏ | 79/363 [00:02<00:08, 32.35it/s] Loading 0: 23%|██▎ | 83/363 [00:02<00:09, 30.11it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:07, 35.69it/s] Loading 0: 26%|██▌ | 93/363 [00:02<00:07, 33.88it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:07, 35.81it/s] Loading 0: 28%|██▊ | 102/363 [00:03<00:07, 34.08it/s] Loading 0: 29%|██▉ | 106/363 [00:03<00:07, 34.22it/s] Loading 0: 31%|███ | 112/363 [00:03<00:06, 37.73it/s] Loading 0: 32%|███▏ | 116/363 [00:03<00:06, 35.77it/s] Loading 0: 33%|███▎ | 120/363 [00:03<00:07, 33.06it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:06, 35.71it/s] Loading 0: 36%|███▌ | 129/363 [00:03<00:06, 33.95it/s] Loading 0: 37%|███▋ | 134/363 [00:03<00:06, 36.39it/s] Loading 0: 38%|███▊ | 138/363 [00:04<00:06, 34.55it/s] Loading 0: 39%|███▉ | 142/363 [00:04<00:09, 23.97it/s] Loading 0: 40%|███▉ | 145/363 [00:04<00:09, 23.25it/s] Loading 0: 41%|████ | 149/363 [00:04<00:08, 23.82it/s] Loading 0: 42%|████▏ | 154/363 [00:04<00:07, 29.10it/s] Loading 0: 44%|████▎ | 158/363 [00:04<00:07, 26.94it/s] Loading 0: 45%|████▌ | 165/363 [00:05<00:05, 33.89it/s] Loading 0: 47%|████▋ | 169/363 [00:05<00:05, 32.99it/s] Loading 0: 48%|████▊ | 174/363 [00:05<00:05, 34.79it/s] Loading 0: 49%|████▉ | 178/363 [00:05<00:05, 33.46it/s] Loading 0: 50%|█████ | 183/363 [00:05<00:05, 35.21it/s] Loading 0: 52%|█████▏ | 187/363 [00:05<00:05, 33.53it/s] Loading 0: 53%|█████▎ | 191/363 [00:05<00:04, 34.68it/s] Loading 0: 54%|█████▎ | 195/363 [00:05<00:05, 30.92it/s] Loading 0: 55%|█████▍ | 199/363 [00:06<00:05, 31.61it/s] Loading 0: 56%|█████▌ | 203/363 [00:06<00:05, 29.31it/s] Loading 0: 57%|█████▋ | 208/363 [00:06<00:04, 34.06it/s] Loading 0: 58%|█████▊ | 212/363 [00:06<00:04, 31.06it/s] Loading 0: 60%|█████▉ | 217/363 [00:06<00:04, 34.78it/s] Loading 0: 61%|██████ | 222/363 [00:06<00:03, 36.72it/s] Loading 0: 62%|██████▏ | 226/363 [00:07<00:06, 22.18it/s] Loading 0: 63%|██████▎ | 230/363 [00:07<00:05, 22.91it/s] Loading 0: 65%|██████▍ | 235/363 [00:07<00:04, 27.51it/s] Loading 0: 66%|██████▌ | 239/363 [00:07<00:04, 26.43it/s] Loading 0: 67%|██████▋ | 244/363 [00:07<00:03, 31.08it/s] Loading 0: 68%|██████▊ | 248/363 [00:07<00:03, 28.92it/s] Loading 0: 70%|██████▉ | 253/363 [00:07<00:03, 32.80it/s] Loading 0: 71%|███████ | 257/363 [00:08<00:03, 29.95it/s] Loading 0: 72%|███████▏ | 262/363 [00:08<00:02, 34.27it/s] Loading 0: 73%|███████▎ | 266/363 [00:08<00:03, 31.13it/s] Loading 0: 75%|███████▌ | 273/363 [00:08<00:02, 37.29it/s] Loading 0: 76%|███████▋ | 277/363 [00:08<00:02, 34.96it/s] Loading 0: 78%|███████▊ | 282/363 [00:08<00:02, 36.34it/s] Loading 0: 79%|███████▉ | 286/363 [00:08<00:02, 34.13it/s] Loading 0: 80%|████████ | 291/363 [00:09<00:01, 36.21it/s] Loading 0: 81%|████████▏ | 295/363 [00:09<00:01, 34.47it/s] Loading 0: 82%|████████▏ | 299/363 [00:09<00:01, 34.14it/s] Loading 0: 84%|████████▎ | 304/363 [00:09<00:03, 17.75it/s] Loading 0: 85%|████████▍ | 307/363 [00:09<00:03, 18.63it/s] Loading 0: 86%|████████▌ | 312/363 [00:10<00:02, 20.37it/s] Loading 0: 88%|████████▊ | 319/363 [00:10<00:01, 27.54it/s] Loading 0: 89%|████████▉ | 323/363 [00:10<00:01, 28.27it/s] Loading 0: 90%|█████████ | 328/363 [00:10<00:01, 31.58it/s] Loading 0: 91%|█████████▏| 332/363 [00:10<00:00, 31.09it/s] Loading 0: 93%|█████████▎| 337/363 [00:10<00:00, 33.93it/s] Loading 0: 94%|█████████▍| 341/363 [00:10<00:00, 32.32it/s] Loading 0: 95%|█████████▌| 346/363 [00:11<00:00, 35.40it/s] Loading 0: 96%|█████████▋| 350/363 [00:11<00:00, 33.75it/s] Loading 0: 98%|█████████▊| 355/363 [00:11<00:00, 35.84it/s] Loading 0: 99%|█████████▉| 359/363 [00:11<00:00, 33.82it/s]
Job albertwang8192-2025-07-11-7-v13-mkmlizer completed after 106.41s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-7-v13-mkmlizer
Pipeline stage MKMLizer completed in 106.89s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-7-v13
Waiting for inference service albertwang8192-2025-07-11-7-v13 to be ready
Failed to get response for submission albertwang8192-2025-07-13-1_v1: HTTPConnectionPool(host='albertwang8192-2025-07-13-1-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service albertwang8192-2025-07-11-7-v13 ready after 221.31322169303894s
Pipeline stage MKMLDeployer completed in 222.08s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.6015946865081787s
Received healthy response to inference request in 1.660315752029419s
Received healthy response to inference request in 1.658094882965088s
Received healthy response to inference request in 2.076953887939453s
Received healthy response to inference request in 1.5525667667388916s
5 requests
0 failed requests
5th percentile: 1.573672389984131
10th percentile: 1.59477801322937
20th percentile: 1.6369892597198485
30th percentile: 1.658539056777954
40th percentile: 1.6594274044036865
50th percentile: 1.660315752029419
60th percentile: 1.8269710063934326
70th percentile: 1.9936262607574462
80th percentile: 2.181882047653198
90th percentile: 2.3917383670806887
95th percentile: 2.4966665267944337
99th percentile: 2.58060905456543
mean time: 1.909905195236206
Pipeline stage StressChecker completed in 10.90s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.69s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.94s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v13 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-11-7-v13-profiler
Waiting for inference service albertwang8192-2025-07-11-7-v13-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5953.11s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v13 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-7_v13 status is now torndown due to DeploymentManager action