developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-7_v10
model_name: 2025-07-11_7_v10
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T21:20:29+00:00
num_battles: 8011
num_wins: 3936
celo_rating: 1280.49
family_friendly_score: 0.5522
family_friendly_standard_error: 0.007032427177013638
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_7
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5968230162021813, 'latency_mean': 1.6754246151447296, 'latency_p50': 1.6813149452209473, 'latency_p90': 1.8470828771591186}, {'batch_size': 3, 'throughput': 1.080449098493238, 'latency_mean': 2.769506734609604, 'latency_p50': 2.761197805404663, 'latency_p90': 3.016596293449402}, {'batch_size': 5, 'throughput': 1.2911037006528119, 'latency_mean': 3.8512116360664366, 'latency_p50': 3.8599181175231934, 'latency_p90': 4.322885370254516}, {'batch_size': 6, 'throughput': 1.3697441726385857, 'latency_mean': 4.365461297035218, 'latency_p50': 4.39686906337738, 'latency_p90': 4.863945817947387}, {'batch_size': 8, 'throughput': 1.4328371971451213, 'latency_mean': 5.545555273294449, 'latency_p50': 5.572189569473267, 'latency_p90': 6.209611654281616}, {'batch_size': 10, 'throughput': 1.4574650432287497, 'latency_mean': 6.802955187559128, 'latency_p50': 6.8376466035842896, 'latency_p90': 7.684748029708862}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_7_v10
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_7
model_size: 13B
ranking_group: single
throughput_3p7s: 1.28
us_pacific_date: 2025-07-12
win_ratio: 0.4913244289102484
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 40, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_start|>', '<|im_end|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-7-v10-mkmlizer
Waiting for job on albertwang8192-2025-07-11-7-v10-mkmlizer to finish
albertwang8192-2025-07-11-7-v10-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ║ ║
albertwang8192-2025-07-11-7-v10-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-7-v10-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v10-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v10-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v10-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v10-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v10-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-7-v10-mkmlizer: Downloaded to shared memory in 31.582s
albertwang8192-2025-07-11-7-v10-mkmlizer: Checking if AlbertWang8192/2025-07-11_7 already exists in ChaiML
albertwang8192-2025-07-11-7-v10-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmprkj40ut8, device:0
albertwang8192-2025-07-11-7-v10-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Failed to get response for submission chaiml-gy-exp158-cpo-ex_43900_v1: HTTPConnectionPool(host='chaiml-gy-exp158-cpo-ex-43900-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission chaiml-gy-exp158-cpo-ex_43900_v1: HTTPConnectionPool(host='chaiml-gy-exp158-cpo-ex-43900-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
albertwang8192-2025-07-11-7-v10-mkmlizer: quantized model in 29.607s
albertwang8192-2025-07-11-7-v10-mkmlizer: Processed model AlbertWang8192/2025-07-11_7 in 61.277s
albertwang8192-2025-07-11-7-v10-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-7-v10-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-7-v10-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v10/nvidia
albertwang8192-2025-07-11-7-v10-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v10/nvidia/config.json
albertwang8192-2025-07-11-7-v10-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v10/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-7-v10-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v10/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-7-v10-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v10/nvidia/tokenizer.json
albertwang8192-2025-07-11-7-v10-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-7-v10/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-7-v10-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.81it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.87it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 48.37it/s] Loading 0: 7%|▋ | 25/363 [00:00<00:06, 48.96it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 51.38it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 48.76it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:06, 47.01it/s] Loading 0: 13%|█▎ | 49/363 [00:00<00:05, 52.35it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 47.61it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 35.50it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 35.78it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 39.99it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 39.50it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 40.35it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:05, 45.73it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 44.28it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:05, 43.81it/s] Loading 0: 30%|███ | 109/363 [00:02<00:04, 52.12it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 46.70it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 44.26it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:05, 46.32it/s] Loading 0: 36%|███▌ | 131/363 [00:02<00:04, 47.19it/s] Loading 0: 37%|███▋ | 136/363 [00:03<00:05, 39.75it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 33.27it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 33.81it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 33.42it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 37.96it/s] Loading 0: 44%|████▍ | 160/363 [00:03<00:05, 38.24it/s] Loading 0: 46%|████▌ | 166/363 [00:03<00:04, 42.35it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 42.34it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 41.79it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:03, 45.42it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:03, 44.02it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 42.98it/s] Loading 0: 55%|█████▍ | 198/363 [00:04<00:03, 43.45it/s] Loading 0: 56%|█████▌ | 203/363 [00:04<00:04, 35.09it/s] Loading 0: 58%|█████▊ | 210/363 [00:04<00:03, 42.32it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 42.13it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:03, 46.18it/s] Loading 0: 62%|██████▏ | 226/363 [00:05<00:04, 28.52it/s] Loading 0: 63%|██████▎ | 230/363 [00:05<00:04, 28.86it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 36.54it/s] Loading 0: 67%|██████▋ | 242/363 [00:05<00:03, 38.07it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.51it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 41.31it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 34.72it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 40.30it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 40.29it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 40.25it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:02, 41.13it/s] Loading 0: 78%|███████▊ | 284/363 [00:06<00:02, 34.98it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 42.33it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.09it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 43.82it/s] Loading 0: 84%|████████▍ | 306/363 [00:07<00:02, 23.41it/s] Loading 0: 85%|████████▌ | 310/363 [00:07<00:02, 24.60it/s] Loading 0: 87%|████████▋ | 315/363 [00:08<00:01, 28.87it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 33.09it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 35.69it/s] Loading 0: 91%|█████████ | 331/363 [00:08<00:00, 37.42it/s] Loading 0: 93%|█████████▎| 338/363 [00:08<00:00, 43.80it/s] Loading 0: 95%|█████████▍| 344/363 [00:08<00:00, 43.38it/s] Loading 0: 96%|█████████▌| 349/363 [00:08<00:00, 43.41it/s] Loading 0: 98%|█████████▊| 356/363 [00:08<00:00, 48.71it/s] Loading 0: 100%|█████████▉| 362/363 [00:09<00:00, 46.39it/s]
Job albertwang8192-2025-07-11-7-v10-mkmlizer completed after 85.98s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-7-v10-mkmlizer
Pipeline stage MKMLizer completed in 86.65s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-7-v10
Waiting for inference service albertwang8192-2025-07-11-7-v10 to be ready
Failed to get response for submission chaiml-gy-exp158-cpo-ex_43900_v1: HTTPConnectionPool(host='chaiml-gy-exp158-cpo-ex-43900-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Failed to get response for submission chaiml-gy-exp158-cpo-ex_43900_v1: HTTPConnectionPool(host='chaiml-gy-exp158-cpo-ex-43900-v1-predictor.tenant-chaiml-guanaco.k.chaiverse.com', port=80): Read timed out. (read timeout=12.0)
Inference service albertwang8192-2025-07-11-7-v10 ready after 221.13108110427856s
Pipeline stage MKMLDeployer completed in 221.71s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.2550408840179443s
Received healthy response to inference request in 1.5194518566131592s
Received healthy response to inference request in 1.531613826751709s
Received healthy response to inference request in 1.492211103439331s
Received healthy response to inference request in 1.549534559249878s
5 requests
0 failed requests
5th percentile: 1.4976592540740967
10th percentile: 1.5031074047088624
20th percentile: 1.5140037059783935
30th percentile: 1.5218842506408692
40th percentile: 1.526749038696289
50th percentile: 1.531613826751709
60th percentile: 1.5387821197509766
70th percentile: 1.5459504127502441
80th percentile: 1.6906358242034913
90th percentile: 1.972838354110718
95th percentile: 2.1139396190643307
99th percentile: 2.2268206310272216
mean time: 1.6695704460144043
Pipeline stage StressChecker completed in 10.03s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.72s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.72s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v10 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-11-7-v10-profiler
Waiting for inference service albertwang8192-2025-07-11-7-v10-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5699.25s
Shutdown handler de-registered
albertwang8192-2025-07-11-7_v10 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-7_v10 status is now torndown due to DeploymentManager action