developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-2_v6
model_name: 2025-07-11_2_v6
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T05:03:58+00:00
num_battles: 9778
num_wins: 4851
celo_rating: 1271.37
family_friendly_score: 0.529
family_friendly_standard_error: 0.007059164256482491
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_2
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.6037256944674273, 'latency_mean': 1.6562788677215576, 'latency_p50': 1.6448572874069214, 'latency_p90': 1.8297746658325196}, {'batch_size': 3, 'throughput': 1.07323059532813, 'latency_mean': 2.7845305836200716, 'latency_p50': 2.7914966344833374, 'latency_p90': 3.0668296575546266}, {'batch_size': 5, 'throughput': 1.2896079471824093, 'latency_mean': 3.845620836019516, 'latency_p50': 3.85592520236969, 'latency_p90': 4.208723545074463}, {'batch_size': 6, 'throughput': 1.370097201889866, 'latency_mean': 4.365361624956131, 'latency_p50': 4.37537682056427, 'latency_p90': 4.831853938102722}, {'batch_size': 8, 'throughput': 1.4252260187631542, 'latency_mean': 5.560249760150909, 'latency_p50': 5.588379502296448, 'latency_p90': 6.248308515548706}, {'batch_size': 10, 'throughput': 1.4547096500824532, 'latency_mean': 6.81496199965477, 'latency_p50': 6.7988375425338745, 'latency_p90': 7.655475807189942}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_2_v6
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_2
model_size: 13B
ranking_group: single
throughput_3p7s: 1.28
us_pacific_date: 2025-07-11
win_ratio: 0.4961137246880753
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.5, 'frequency_penalty': 0.5, 'stopping_words': ['<|im_end|>', '\n', '<|im_start|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-2-v6-mkmlizer
Waiting for job on albertwang8192-2025-07-11-2-v6-mkmlizer to finish
albertwang8192-2025-07-11-2-v6-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v6-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-2-v6-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v6-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v6-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v6-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v6-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v6-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v6-mkmlizer: Downloaded to shared memory in 30.444s
albertwang8192-2025-07-11-2-v6-mkmlizer: Checking if AlbertWang8192/2025-07-11_2 already exists in ChaiML
albertwang8192-2025-07-11-2-v6-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp51_okf7p, device:0
albertwang8192-2025-07-11-2-v6-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-2-v6-mkmlizer: quantized model in 29.783s
albertwang8192-2025-07-11-2-v6-mkmlizer: Processed model AlbertWang8192/2025-07-11_2 in 60.312s
albertwang8192-2025-07-11-2-v6-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-2-v6-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-2-v6-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v6/nvidia
albertwang8192-2025-07-11-2-v6-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v6/nvidia/config.json
albertwang8192-2025-07-11-2-v6-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v6/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-2-v6-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v6/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-2-v6-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v6/nvidia/tokenizer.json
albertwang8192-2025-07-11-2-v6-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v6/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-2-v6-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.19it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 50.33it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 46.39it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 45.17it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 51.24it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 47.31it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 45.47it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 50.30it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 46.97it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 35.37it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 35.66it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 39.88it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 39.68it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:07, 39.34it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 43.70it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 43.50it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 43.64it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 45.07it/s] Loading 0: 30%|███ | 110/363 [00:02<00:05, 43.80it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 44.51it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:06, 40.25it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 42.14it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 41.67it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 42.20it/s] Loading 0: 39%|███▉ | 141/363 [00:03<00:05, 41.90it/s] Loading 0: 40%|████ | 146/363 [00:03<00:07, 30.18it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:07, 29.90it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 36.08it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 38.76it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 40.84it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 40.85it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 40.99it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:03, 46.21it/s] Loading 0: 52%|█████▏ | 190/363 [00:04<00:03, 44.22it/s] Loading 0: 54%|█████▎ | 195/363 [00:04<00:03, 42.42it/s] Loading 0: 56%|█████▌ | 202/363 [00:04<00:03, 47.09it/s] Loading 0: 57%|█████▋ | 208/363 [00:04<00:03, 44.28it/s] Loading 0: 59%|█████▊ | 213/363 [00:05<00:03, 42.70it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:03, 44.00it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 33.06it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 33.29it/s] Loading 0: 64%|██████▎ | 231/363 [00:05<00:04, 32.24it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 37.10it/s] Loading 0: 66%|██████▋ | 241/363 [00:05<00:03, 37.48it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 41.52it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 43.15it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 34.75it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 42.36it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 42.49it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:02, 41.98it/s] Loading 0: 77%|███████▋ | 279/363 [00:06<00:01, 43.18it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 35.91it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 42.66it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 41.73it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 43.55it/s] Loading 0: 84%|████████▍ | 306/363 [00:07<00:02, 23.50it/s] Loading 0: 85%|████████▌ | 310/363 [00:07<00:02, 24.61it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 27.11it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 32.78it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 35.28it/s] Loading 0: 91%|█████████ | 331/363 [00:08<00:00, 36.48it/s] Loading 0: 93%|█████████▎| 338/363 [00:08<00:00, 42.74it/s] Loading 0: 94%|█████████▍| 343/363 [00:08<00:00, 44.12it/s] Loading 0: 96%|█████████▌| 348/363 [00:08<00:00, 37.82it/s] Loading 0: 98%|█████████▊| 356/363 [00:08<00:00, 45.64it/s] Loading 0: 100%|█████████▉| 362/363 [00:09<00:00, 43.39it/s]
Job albertwang8192-2025-07-11-2-v6-mkmlizer completed after 85.87s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-2-v6-mkmlizer
Pipeline stage MKMLizer completed in 86.41s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-2-v6
Waiting for inference service albertwang8192-2025-07-11-2-v6 to be ready
Retrying (%r) after connection broken by '%r': %s
Inference service albertwang8192-2025-07-11-2-v6 ready after 191.21446180343628s
Pipeline stage MKMLDeployer completed in 192.07s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.3472747802734375s
Received healthy response to inference request in 1.6569926738739014s
Received healthy response to inference request in 1.708052635192871s
Received healthy response to inference request in 1.7656562328338623s
Received healthy response to inference request in 1.6388871669769287s
5 requests
0 failed requests
5th percentile: 1.6425082683563232
10th percentile: 1.6461293697357178
20th percentile: 1.6533715724945068
30th percentile: 1.6672046661376954
40th percentile: 1.6876286506652831
50th percentile: 1.708052635192871
60th percentile: 1.7310940742492675
70th percentile: 1.754135513305664
80th percentile: 1.8819799423217773
90th percentile: 2.1146273612976074
95th percentile: 2.2309510707855225
99th percentile: 2.3240100383758544
mean time: 1.8233726978302003
Pipeline stage StressChecker completed in 10.45s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.79s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.66s
Shutdown handler de-registered
albertwang8192-2025-07-11-2_v6 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2939.30s
Shutdown handler de-registered
albertwang8192-2025-07-11-2_v6 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-2_v6 status is now torndown due to DeploymentManager action