developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-11-2_v4
model_name: 2025-07-11_2_v4
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-12T04:52:39+00:00
num_battles: 7306
num_wins: 3568
celo_rating: 1271.47
family_friendly_score: 0.5334
family_friendly_standard_error: 0.007055273772150873
submission_type: basic
model_repo: AlbertWang8192/2025-07-11_2
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.6060249053646336, 'latency_mean': 1.649993371963501, 'latency_p50': 1.639414668083191, 'latency_p90': 1.8433680534362793}, {'batch_size': 3, 'throughput': 1.0779481203722596, 'latency_mean': 2.7731818091869354, 'latency_p50': 2.7852426767349243, 'latency_p90': 3.026496648788452}, {'batch_size': 5, 'throughput': 1.293979106889611, 'latency_mean': 3.850074379444122, 'latency_p50': 3.8539928197860718, 'latency_p90': 4.31609570980072}, {'batch_size': 6, 'throughput': 1.3503799784470958, 'latency_mean': 4.427951052188873, 'latency_p50': 4.432045221328735, 'latency_p90': 5.0065936803817745}, {'batch_size': 8, 'throughput': 1.4066541398225658, 'latency_mean': 5.645082362890244, 'latency_p50': 5.684008479118347, 'latency_p90': 6.374887633323669}, {'batch_size': 10, 'throughput': 1.440101606259398, 'latency_mean': 6.888973289728165, 'latency_p50': 6.856619954109192, 'latency_p90': 7.688326573371887}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-11_2_v4
is_internal_developer: False
language_model: AlbertWang8192/2025-07-11_2
model_size: 13B
ranking_group: single
throughput_3p7s: 1.28
us_pacific_date: 2025-07-11
win_ratio: 0.4883657267998905
generation_params: {'temperature': 0.6, 'top_p': 0.98, 'min_p': 0.05, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_end|>', '<|im_start|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': True}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-2-v4-mkmlizer
Waiting for job on albertwang8192-2025-07-11-2-v4-mkmlizer to finish
albertwang8192-2025-07-11-2-v4-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v4-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-2-v4-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v4-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v4-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v4-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v4-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v4-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v4-mkmlizer: Downloaded to shared memory in 32.027s
albertwang8192-2025-07-11-2-v4-mkmlizer: Checking if AlbertWang8192/2025-07-11_2 already exists in ChaiML
albertwang8192-2025-07-11-2-v4-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmph8gcf7z2, device:0
albertwang8192-2025-07-11-2-v4-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-2-v4-mkmlizer: quantized model in 31.023s
albertwang8192-2025-07-11-2-v4-mkmlizer: Processed model AlbertWang8192/2025-07-11_2 in 63.147s
albertwang8192-2025-07-11-2-v4-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-2-v4-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-2-v4-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v4/nvidia
albertwang8192-2025-07-11-2-v4-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v4/nvidia/config.json
albertwang8192-2025-07-11-2-v4-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v4/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-2-v4-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v4/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-2-v4-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v4/nvidia/tokenizer.json
albertwang8192-2025-07-11-2-v4-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v4/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-2-v4-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:12, 28.82it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 48.14it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:08, 40.91it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 39.04it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 45.33it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 42.81it/s] Loading 0: 12%|█▏ | 42/363 [00:01<00:07, 41.55it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 46.75it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 44.98it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 45.28it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 28.99it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 34.07it/s] Loading 0: 21%|██ | 76/363 [00:01<00:07, 35.99it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 38.06it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:06, 40.16it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:08, 33.99it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:06, 40.75it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:06, 38.87it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:06, 40.75it/s] Loading 0: 31%|███ | 113/363 [00:02<00:07, 35.37it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:06, 35.52it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 42.00it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 41.55it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 41.54it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 43.14it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 26.53it/s] Loading 0: 41%|████ | 149/363 [00:04<00:07, 27.34it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:06, 33.94it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 35.12it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 36.65it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 38.78it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 32.30it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 39.70it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 40.26it/s] Loading 0: 53%|█████▎ | 193/363 [00:05<00:04, 40.49it/s] Loading 0: 55%|█████▍ | 198/363 [00:05<00:04, 40.95it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 33.81it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 39.89it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 39.37it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 40.76it/s] Loading 0: 62%|██████▏ | 225/363 [00:06<00:05, 25.49it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 27.94it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 34.42it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 35.26it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:03, 36.18it/s] Loading 0: 69%|██████▉ | 251/363 [00:06<00:03, 35.63it/s] Loading 0: 70%|███████ | 255/363 [00:06<00:02, 36.01it/s] Loading 0: 71%|███████▏ | 259/363 [00:07<00:02, 35.77it/s] Loading 0: 73%|███████▎ | 264/363 [00:07<00:02, 39.40it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 38.66it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 39.75it/s] Loading 0: 77%|███████▋ | 279/363 [00:07<00:01, 42.16it/s] Loading 0: 78%|███████▊ | 284/363 [00:07<00:02, 35.12it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 42.33it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.63it/s] Loading 0: 83%|████████▎ | 302/363 [00:07<00:01, 46.72it/s] Loading 0: 85%|████████▍ | 307/363 [00:08<00:02, 21.44it/s] Loading 0: 86%|████████▌ | 312/363 [00:08<00:02, 22.98it/s] Loading 0: 87%|████████▋ | 317/363 [00:08<00:01, 27.21it/s] Loading 0: 88%|████████▊ | 321/363 [00:08<00:01, 26.72it/s] Loading 0: 90%|████████▉ | 326/363 [00:09<00:01, 31.17it/s] Loading 0: 91%|█████████ | 330/363 [00:09<00:01, 29.59it/s] Loading 0: 93%|█████████▎| 337/363 [00:09<00:00, 36.75it/s] Loading 0: 94%|█████████▍| 342/363 [00:09<00:00, 37.74it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 39.27it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 40.75it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 34.66it/s]
Job albertwang8192-2025-07-11-2-v4-mkmlizer completed after 84.63s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-2-v4-mkmlizer
Pipeline stage MKMLizer completed in 85.13s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.46s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-2-v4
Waiting for inference service albertwang8192-2025-07-11-2-v4 to be ready
Retrying (%r) after connection broken by '%r': %s
Inference service albertwang8192-2025-07-11-2-v4 ready after 210.80248880386353s
Pipeline stage MKMLDeployer completed in 211.35s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.163879632949829s
Received healthy response to inference request in 1.4581384658813477s
Received healthy response to inference request in 1.920102834701538s
Received healthy response to inference request in 1.586397409439087s
Received healthy response to inference request in 1.5049993991851807s
5 requests
0 failed requests
5th percentile: 1.4675106525421142
10th percentile: 1.4768828392028808
20th percentile: 1.495627212524414
30th percentile: 1.5212790012359618
40th percentile: 1.5538382053375244
50th percentile: 1.586397409439087
60th percentile: 1.7198795795440673
70th percentile: 1.8533617496490478
80th percentile: 1.9688581943511962
90th percentile: 2.066368913650513
95th percentile: 2.1151242733001707
99th percentile: 2.1541285610198972
mean time: 1.7267035484313964
Pipeline stage StressChecker completed in 10.15s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.69s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.71s
Shutdown handler de-registered
albertwang8192-2025-07-11-2_v4 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-11-2-v4-profiler
Waiting for inference service albertwang8192-2025-07-11-2-v4-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3111.99s
Shutdown handler de-registered
albertwang8192-2025-07-11-2_v4 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-2_v4 status is now torndown due to DeploymentManager action