Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-11-2-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-11-2-v1-mkmlizer to finish
albertwang8192-2025-07-11-2-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-11-2-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-11-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-11-2-v1-mkmlizer: Downloaded to shared memory in 54.267s
albertwang8192-2025-07-11-2-v1-mkmlizer: Checking if AlbertWang8192/2025-07-11_2 already exists in ChaiML
albertwang8192-2025-07-11-2-v1-mkmlizer: Creating repo ChaiML/2025-07-11_2 and uploading /tmp/tmpeb43ntph to it
albertwang8192-2025-07-11-2-v1-mkmlizer:
0%| | 0/6 [00:00<?, ?it/s]
17%|█▋ | 1/6 [00:07<00:35, 7.13s/it]
33%|███▎ | 2/6 [00:10<00:20, 5.11s/it]
50%|█████ | 3/6 [00:14<00:13, 4.44s/it]
67%|██████▋ | 4/6 [00:23<00:12, 6.06s/it]
83%|████████▎ | 5/6 [00:29<00:06, 6.27s/it]
100%|██████████| 6/6 [00:30<00:00, 4.54s/it]
100%|██████████| 6/6 [00:30<00:00, 5.14s/it]
albertwang8192-2025-07-11-2-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpeb43ntph, device:0
albertwang8192-2025-07-11-2-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-11-2-v1-mkmlizer: quantized model in 30.854s
albertwang8192-2025-07-11-2-v1-mkmlizer: Processed model AlbertWang8192/2025-07-11_2 in 141.421s
albertwang8192-2025-07-11-2-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-11-2-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-11-2-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v1/nvidia
albertwang8192-2025-07-11-2-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v1/nvidia/config.json
albertwang8192-2025-07-11-2-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-11-2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-11-2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v1/nvidia/tokenizer.json
albertwang8192-2025-07-11-2-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-11-2-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-11-2-v1-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%|▏ | 5/363 [00:00<00:12, 29.20it/s]
Loading 0: 3%|▎ | 12/363 [00:00<00:07, 47.46it/s]
Loading 0: 5%|▍ | 18/363 [00:00<00:07, 48.69it/s]
Loading 0: 7%|▋ | 24/363 [00:00<00:08, 39.83it/s]
Loading 0: 9%|▊ | 31/363 [00:00<00:07, 46.12it/s]
Loading 0: 10%|█ | 37/363 [00:00<00:07, 43.64it/s]
Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 42.80it/s]
Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 47.74it/s]
Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 44.61it/s]
Loading 0: 17%|█▋ | 61/363 [00:01<00:09, 32.56it/s]
Loading 0: 18%|█▊ | 65/363 [00:01<00:09, 31.80it/s]
Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 38.21it/s]
Loading 0: 21%|██ | 77/363 [00:01<00:07, 40.77it/s]
Loading 0: 23%|██▎ | 82/363 [00:02<00:07, 35.85it/s]
Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 42.68it/s]
Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 42.55it/s]
Loading 0: 27%|██▋ | 99/363 [00:02<00:06, 43.14it/s]
Loading 0: 29%|██▉ | 105/363 [00:02<00:06, 41.16it/s]
Loading 0: 30%|███ | 110/363 [00:02<00:05, 43.05it/s]
Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 42.64it/s]
Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 40.94it/s]
Loading 0: 35%|███▍ | 126/363 [00:03<00:05, 43.54it/s]
Loading 0: 36%|███▌ | 131/363 [00:03<00:05, 45.13it/s]
Loading 0: 37%|███▋ | 136/363 [00:03<00:06, 36.75it/s]
Loading 0: 39%|███▉ | 142/363 [00:03<00:07, 30.82it/s]
Loading 0: 40%|████ | 146/363 [00:03<00:06, 31.63it/s]
Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 31.30it/s]
Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 35.79it/s]
Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 35.68it/s]
Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 37.77it/s]
Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 36.69it/s]
Loading 0: 48%|████▊ | 174/363 [00:04<00:04, 38.42it/s]
Loading 0: 49%|████▉ | 178/363 [00:04<00:05, 36.65it/s]
Loading 0: 50%|█████ | 183/363 [00:04<00:04, 38.93it/s]
Loading 0: 52%|█████▏ | 187/363 [00:04<00:04, 37.98it/s]
Loading 0: 53%|█████▎ | 192/363 [00:04<00:04, 40.76it/s]
Loading 0: 54%|█████▍ | 197/363 [00:05<00:04, 41.46it/s]
Loading 0: 56%|█████▌ | 202/363 [00:05<00:03, 41.19it/s]
Loading 0: 57%|█████▋ | 207/363 [00:05<00:03, 42.04it/s]
Loading 0: 58%|█████▊ | 212/363 [00:05<00:04, 34.39it/s]
Loading 0: 60%|██████ | 218/363 [00:05<00:03, 39.19it/s]
Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 29.75it/s]
Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 30.97it/s]
Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 30.73it/s]
Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 36.07it/s]
Loading 0: 66%|██████▋ | 241/363 [00:06<00:03, 36.34it/s]
Loading 0: 68%|██████▊ | 246/363 [00:06<00:02, 39.43it/s]
Loading 0: 69%|██████▉ | 251/363 [00:06<00:02, 40.34it/s]
Loading 0: 71%|███████ | 256/363 [00:06<00:02, 40.34it/s]
Loading 0: 72%|███████▏ | 261/363 [00:06<00:02, 42.60it/s]
Loading 0: 73%|███████▎ | 266/363 [00:06<00:02, 35.76it/s]
Loading 0: 75%|███████▌ | 273/363 [00:07<00:02, 41.79it/s]
Loading 0: 77%|███████▋ | 278/363 [00:07<00:02, 42.07it/s]
Loading 0: 78%|███████▊ | 283/363 [00:07<00:01, 42.56it/s]
Loading 0: 80%|███████▉ | 289/363 [00:07<00:01, 40.64it/s]
Loading 0: 81%|████████ | 294/363 [00:07<00:01, 39.58it/s]
Loading 0: 82%|████████▏ | 299/363 [00:07<00:01, 41.14it/s]
Loading 0: 84%|████████▎ | 304/363 [00:08<00:02, 23.04it/s]
Loading 0: 85%|████████▍ | 308/363 [00:08<00:02, 25.46it/s]
Loading 0: 86%|████████▌ | 312/363 [00:08<00:01, 25.85it/s]
Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 35.15it/s]
Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 36.14it/s]
Loading 0: 91%|█████████ | 331/363 [00:08<00:00, 37.20it/s]
Loading 0: 93%|█████████▎| 338/363 [00:08<00:00, 42.68it/s]
Loading 0: 94%|█████████▍| 343/363 [00:09<00:00, 44.30it/s]
Loading 0: 96%|█████████▌| 348/363 [00:09<00:00, 37.12it/s]
Loading 0: 98%|█████████▊| 355/363 [00:09<00:00, 43.41it/s]
Loading 0: 99%|█████████▉| 360/363 [00:09<00:00, 43.03it/s]
Job albertwang8192-2025-07-11-2-v1-mkmlizer completed after 168.33s with status: succeeded
Stopping job with name albertwang8192-2025-07-11-2-v1-mkmlizer
Pipeline stage MKMLizer completed in 168.82s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-11-2-v1
Waiting for inference service albertwang8192-2025-07-11-2-v1 to be ready
Inference service albertwang8192-2025-07-11-2-v1 ready after 200.69043803215027s
Pipeline stage MKMLDeployer completed in 201.24s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.3079733848571777s
Received healthy response to inference request in 1.7625706195831299s
Received healthy response to inference request in 1.5657014846801758s
Received healthy response to inference request in 1.6758618354797363s
Received healthy response to inference request in 1.6154937744140625s
5 requests
0 failed requests
5th percentile: 1.575659942626953
10th percentile: 1.5856184005737304
20th percentile: 1.6055353164672852
30th percentile: 1.6275673866271974
40th percentile: 1.6517146110534668
50th percentile: 1.6758618354797363
60th percentile: 1.7105453491210938
70th percentile: 1.7452288627624513
80th percentile: 1.8716511726379395
90th percentile: 2.0898122787475586
95th percentile: 2.198892831802368
99th percentile: 2.2861572742462157
mean time: 1.7855202198028564
Pipeline stage StressChecker completed in 10.36s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.70s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.73s
Shutdown handler de-registered
albertwang8192-2025-07-11-2_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5653.20s
Shutdown handler de-registered
albertwang8192-2025-07-11-2_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-11-2_v1 status is now torndown due to DeploymentManager action