developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-10-1_v1
model_name: 2025-07-10_1
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-10T23:29:12+00:00
num_battles: 7282
num_wins: 3267
celo_rating: 1253.87
family_friendly_score: 0.5851999999999999
family_friendly_standard_error: 0.006967653263474008
submission_type: basic
model_repo: AlbertWang8192/2025-07-10_1
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5807590652345946, 'latency_mean': 1.721760448217392, 'latency_p50': 1.719387412071228, 'latency_p90': 1.8958768606185914}, {'batch_size': 3, 'throughput': 1.0626279718038296, 'latency_mean': 2.812751977443695, 'latency_p50': 2.8179495334625244, 'latency_p90': 3.107430028915405}, {'batch_size': 5, 'throughput': 1.27084327903547, 'latency_mean': 3.9231641697883606, 'latency_p50': 3.933714747428894, 'latency_p90': 4.42307710647583}, {'batch_size': 6, 'throughput': 1.3419767972551415, 'latency_mean': 4.447200685739517, 'latency_p50': 4.468536138534546, 'latency_p90': 4.937974357604981}, {'batch_size': 8, 'throughput': 1.4011550620512534, 'latency_mean': 5.676085500717163, 'latency_p50': 5.667081832885742, 'latency_p90': 6.316828775405884}, {'batch_size': 10, 'throughput': 1.4344851656016346, 'latency_mean': 6.918666133880615, 'latency_p50': 6.874746561050415, 'latency_p90': 7.812259840965271}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-10_1
is_internal_developer: False
language_model: AlbertWang8192/2025-07-10_1
model_size: 13B
ranking_group: single
throughput_3p7s: 1.24
us_pacific_date: 2025-07-10
win_ratio: 0.4486404833836858
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_end|>', '<|im_start|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-10-1-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-10-1-v1-mkmlizer to finish
albertwang8192-2025-07-10-1-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-1-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-10-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-1-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-1-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:08<00:43, 8.65s/it] 33%|███▎ | 2/6 [00:12<00:23, 5.89s/it] 50%|█████ | 3/6 [00:21<00:21, 7.10s/it] 67%|██████▋ | 4/6 [00:29<00:15, 7.67s/it] 83%|████████▎ | 5/6 [00:33<00:06, 6.31s/it] 100%|██████████| 6/6 [00:34<00:00, 4.51s/it] 100%|██████████| 6/6 [00:34<00:00, 5.77s/it]
albertwang8192-2025-07-10-1-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpke5sjnej, device:0
albertwang8192-2025-07-10-1-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-10-1-v1-mkmlizer: quantized model in 31.295s
albertwang8192-2025-07-10-1-v1-mkmlizer: Processed model AlbertWang8192/2025-07-10_1 in 150.360s
albertwang8192-2025-07-10-1-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-10-1-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-10-1-v1/nvidia
albertwang8192-2025-07-10-1-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-1-v1/nvidia/config.json
albertwang8192-2025-07-10-1-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-1-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-10-1-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-1-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-10-1-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-1-v1/nvidia/tokenizer.json
albertwang8192-2025-07-10-1-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-10-1-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-10-1-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.55it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 50.03it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 43.74it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 41.99it/s] Loading 0: 8%|▊ | 30/363 [00:00<00:07, 47.09it/s] Loading 0: 10%|▉ | 35/363 [00:00<00:07, 46.25it/s] Loading 0: 11%|█ | 40/363 [00:00<00:07, 45.41it/s] Loading 0: 12%|█▏ | 45/363 [00:01<00:06, 45.79it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:08, 36.08it/s] Loading 0: 16%|█▌ | 57/363 [00:01<00:06, 43.86it/s] Loading 0: 17%|█▋ | 62/363 [00:01<00:10, 29.65it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:09, 31.01it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 34.97it/s] Loading 0: 21%|██ | 76/363 [00:01<00:07, 36.55it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 38.35it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:06, 39.84it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:08, 33.74it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:06, 41.26it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:06, 40.92it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:05, 42.55it/s] Loading 0: 31%|███ | 113/363 [00:02<00:06, 35.88it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:06, 35.21it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 41.45it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 41.04it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 39.31it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 40.98it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 25.51it/s] Loading 0: 41%|████ | 149/363 [00:04<00:08, 26.18it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:06, 32.84it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:06, 33.03it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 35.70it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 35.91it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:04, 38.53it/s] Loading 0: 49%|████▉ | 179/363 [00:04<00:04, 38.81it/s] Loading 0: 51%|█████ | 184/363 [00:04<00:04, 39.46it/s] Loading 0: 52%|█████▏ | 189/363 [00:05<00:04, 41.81it/s] Loading 0: 53%|█████▎ | 194/363 [00:05<00:04, 34.29it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 40.20it/s] Loading 0: 57%|█████▋ | 206/363 [00:05<00:03, 39.99it/s] Loading 0: 58%|█████▊ | 211/363 [00:05<00:03, 39.90it/s] Loading 0: 60%|█████▉ | 216/363 [00:05<00:03, 41.55it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:03, 42.87it/s] Loading 0: 62%|██████▏ | 226/363 [00:06<00:05, 27.38it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 27.98it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 34.97it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 36.45it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:03, 36.88it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 39.87it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:03, 33.68it/s] Loading 0: 73%|███████▎ | 264/363 [00:07<00:02, 40.75it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 41.56it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 42.15it/s] Loading 0: 77%|███████▋ | 280/363 [00:07<00:02, 40.35it/s] Loading 0: 79%|███████▊ | 285/363 [00:07<00:01, 39.75it/s] Loading 0: 80%|███████▉ | 290/363 [00:07<00:01, 42.03it/s] Loading 0: 81%|████████▏ | 295/363 [00:07<00:01, 39.52it/s] Loading 0: 83%|████████▎ | 300/363 [00:07<00:01, 40.70it/s] Loading 0: 84%|████████▍ | 305/363 [00:08<00:02, 22.45it/s] Loading 0: 85%|████████▌ | 309/363 [00:08<00:02, 24.77it/s] Loading 0: 86%|████████▌ | 313/363 [00:08<00:02, 24.93it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 32.71it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 34.24it/s] Loading 0: 91%|█████████ | 330/363 [00:09<00:00, 33.61it/s] Loading 0: 93%|█████████▎| 337/363 [00:09<00:00, 40.78it/s] Loading 0: 94%|█████████▍| 342/363 [00:09<00:00, 40.39it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 40.56it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 41.22it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 33.59it/s]
Job albertwang8192-2025-07-10-1-v1-mkmlizer completed after 179.0s with status: succeeded
Stopping job with name albertwang8192-2025-07-10-1-v1-mkmlizer
Pipeline stage MKMLizer completed in 179.60s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-10-1-v1
Waiting for inference service albertwang8192-2025-07-10-1-v1 to be ready
Inference service albertwang8192-2025-07-10-1-v1 ready after 201.0609450340271s
Pipeline stage MKMLDeployer completed in 201.61s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.6255009174346924s
Received healthy response to inference request in 1.4427547454833984s
Received healthy response to inference request in 1.4485743045806885s
Received healthy response to inference request in 1.505687952041626s
Received healthy response to inference request in 1.9394018650054932s
5 requests
0 failed requests
5th percentile: 1.4439186573028564
10th percentile: 1.4450825691223144
20th percentile: 1.4474103927612305
30th percentile: 1.459997034072876
40th percentile: 1.482842493057251
50th percentile: 1.505687952041626
60th percentile: 1.679173517227173
70th percentile: 1.8526590824127196
80th percentile: 2.0766216754913334
90th percentile: 2.351061296463013
95th percentile: 2.488281106948852
99th percentile: 2.5980569553375243
mean time: 1.7923839569091797
Pipeline stage StressChecker completed in 10.38s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.76s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.65s
Shutdown handler de-registered
albertwang8192-2025-07-10-1_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-10-1-v1-profiler
Waiting for inference service albertwang8192-2025-07-10-1-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5299.39s
Shutdown handler de-registered
albertwang8192-2025-07-10-1_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-10-1_v1 status is now torndown due to DeploymentManager action