developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-10-0_v1
model_name: 2025-07-10_0
model_group: AlbertWang8192/2025-07-1
status: torndown
timestamp: 2025-07-10T20:11:41+00:00
num_battles: 7608
num_wins: 3579
celo_rating: 1265.58
family_friendly_score: 0.5853999999999999
family_friendly_standard_error: 0.006967163554847841
submission_type: basic
model_repo: AlbertWang8192/2025-07-10_0
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5945529064606346, 'latency_mean': 1.681778701543808, 'latency_p50': 1.6775423288345337, 'latency_p90': 1.8479406833648682}, {'batch_size': 3, 'throughput': 1.0606115091772772, 'latency_mean': 2.8148697137832643, 'latency_p50': 2.8366105556488037, 'latency_p90': 3.0550976753234864}, {'batch_size': 5, 'throughput': 1.2788860016198293, 'latency_mean': 3.8954804122447966, 'latency_p50': 3.8873488903045654, 'latency_p90': 4.330264925956726}, {'batch_size': 6, 'throughput': 1.3445153383928516, 'latency_mean': 4.439951890707016, 'latency_p50': 4.421371698379517, 'latency_p90': 4.948516225814819}, {'batch_size': 8, 'throughput': 1.4090751803076067, 'latency_mean': 5.6420552229881284, 'latency_p50': 5.624833106994629, 'latency_p90': 6.408565592765808}, {'batch_size': 10, 'throughput': 1.4392181627299123, 'latency_mean': 6.885088714361191, 'latency_p50': 6.833291053771973, 'latency_p90': 7.795856022834777}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-10_0
is_internal_developer: False
language_model: AlbertWang8192/2025-07-10_0
model_size: 13B
ranking_group: single
throughput_3p7s: 1.25
us_pacific_date: 2025-07-10
win_ratio: 0.47042586750788645
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n', '<|im_start|>', '<|im_end|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-10-0-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-10-0-v1-mkmlizer to finish
albertwang8192-2025-07-10-0-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-10-0-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-10-0-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-0-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-0-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-0-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-0-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-0-v1-mkmlizer: Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
albertwang8192-2025-07-10-0-v1-mkmlizer: Downloaded to shared memory in 53.080s
albertwang8192-2025-07-10-0-v1-mkmlizer: Checking if AlbertWang8192/2025-07-10_0 already exists in ChaiML
albertwang8192-2025-07-10-0-v1-mkmlizer: Creating repo ChaiML/2025-07-10_0 and uploading /tmp/tmpropjlfgh to it
albertwang8192-2025-07-10-0-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:08<00:41, 8.26s/it] 33%|███▎ | 2/6 [00:15<00:29, 7.47s/it] 50%|█████ | 3/6 [00:23<00:23, 7.96s/it] 67%|██████▋ | 4/6 [00:30<00:14, 7.45s/it] 83%|████████▎ | 5/6 [00:36<00:06, 6.97s/it] 100%|██████████| 6/6 [00:37<00:00, 4.95s/it] 100%|██████████| 6/6 [00:37<00:00, 6.25s/it]
albertwang8192-2025-07-10-0-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpropjlfgh, device:0
albertwang8192-2025-07-10-0-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-10-0-v1-mkmlizer: quantized model in 30.448s
albertwang8192-2025-07-10-0-v1-mkmlizer: Processed model AlbertWang8192/2025-07-10_0 in 146.151s
albertwang8192-2025-07-10-0-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-10-0-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-10-0-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-10-0-v1/nvidia
albertwang8192-2025-07-10-0-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-0-v1/nvidia/config.json
albertwang8192-2025-07-10-0-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-0-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-10-0-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-0-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-10-0-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-10-0-v1/nvidia/tokenizer.json
albertwang8192-2025-07-10-0-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-10-0-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-10-0-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.41it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.70it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 47.15it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 41.87it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 47.42it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 44.94it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 44.53it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 50.23it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 44.72it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 45.38it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 29.52it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:08, 36.16it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 37.48it/s] Loading 0: 23%|██▎ | 83/363 [00:02<00:07, 37.53it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 43.36it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 42.02it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:06, 41.72it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:05, 48.06it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:05, 43.78it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:05, 42.73it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:05, 47.20it/s] Loading 0: 36%|███▌ | 131/363 [00:03<00:04, 47.84it/s] Loading 0: 37%|███▋ | 136/363 [00:03<00:05, 38.88it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 32.41it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 33.02it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 31.58it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 35.45it/s] Loading 0: 44%|████▍ | 160/363 [00:03<00:05, 35.65it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 38.28it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 37.01it/s] Loading 0: 48%|████▊ | 175/363 [00:04<00:04, 41.00it/s] Loading 0: 50%|████▉ | 181/363 [00:04<00:04, 40.47it/s] Loading 0: 51%|█████ | 186/363 [00:04<00:04, 39.79it/s] Loading 0: 53%|█████▎ | 192/363 [00:04<00:03, 44.30it/s] Loading 0: 54%|█████▍ | 197/363 [00:04<00:03, 44.03it/s] Loading 0: 56%|█████▌ | 202/363 [00:04<00:03, 43.81it/s] Loading 0: 57%|█████▋ | 207/363 [00:05<00:03, 43.06it/s] Loading 0: 58%|█████▊ | 212/363 [00:05<00:04, 35.47it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:03, 40.21it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 31.62it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 32.15it/s] Loading 0: 64%|██████▎ | 231/363 [00:05<00:04, 30.38it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 35.80it/s] Loading 0: 66%|██████▋ | 241/363 [00:06<00:03, 34.94it/s] Loading 0: 68%|██████▊ | 246/363 [00:06<00:03, 37.82it/s] Loading 0: 69%|██████▉ | 250/363 [00:06<00:03, 36.91it/s] Loading 0: 70%|███████ | 255/363 [00:06<00:02, 40.06it/s] Loading 0: 72%|███████▏ | 260/363 [00:06<00:02, 39.33it/s] Loading 0: 73%|███████▎ | 265/363 [00:06<00:02, 40.09it/s] Loading 0: 74%|███████▍ | 270/363 [00:06<00:02, 42.47it/s] Loading 0: 76%|███████▌ | 275/363 [00:06<00:02, 35.93it/s] Loading 0: 78%|███████▊ | 282/363 [00:07<00:01, 43.40it/s] Loading 0: 79%|███████▉ | 287/363 [00:07<00:01, 43.11it/s] Loading 0: 80%|████████ | 292/363 [00:07<00:01, 43.21it/s] Loading 0: 82%|████████▏ | 298/363 [00:07<00:01, 41.54it/s] Loading 0: 83%|████████▎ | 303/363 [00:07<00:01, 42.70it/s] Loading 0: 85%|████████▍ | 308/363 [00:08<00:02, 22.74it/s] Loading 0: 86%|████████▌ | 312/363 [00:08<00:02, 23.18it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 32.07it/s] Loading 0: 90%|████████▉ | 326/363 [00:08<00:01, 34.35it/s] Loading 0: 91%|█████████ | 331/363 [00:08<00:00, 35.81it/s] Loading 0: 93%|█████████▎| 338/363 [00:08<00:00, 41.39it/s] Loading 0: 95%|█████████▍| 344/363 [00:08<00:00, 40.94it/s] Loading 0: 96%|█████████▌| 349/363 [00:09<00:00, 40.64it/s] Loading 0: 98%|█████████▊| 356/363 [00:09<00:00, 45.62it/s] Loading 0: 99%|█████████▉| 361/363 [00:09<00:00, 46.37it/s]
Job albertwang8192-2025-07-10-0-v1-mkmlizer completed after 167.19s with status: succeeded
Stopping job with name albertwang8192-2025-07-10-0-v1-mkmlizer
Pipeline stage MKMLizer completed in 167.67s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-10-0-v1
Waiting for inference service albertwang8192-2025-07-10-0-v1 to be ready
Inference service albertwang8192-2025-07-10-0-v1 ready after 201.26824140548706s
Pipeline stage MKMLDeployer completed in 201.90s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.546544075012207s
Received healthy response to inference request in 1.2551186084747314s
Received healthy response to inference request in 2.600126266479492s
Received healthy response to inference request in 1.8660683631896973s
Received healthy response to inference request in 1.55680513381958s
5 requests
0 failed requests
5th percentile: 1.3154559135437012
10th percentile: 1.375793218612671
20th percentile: 1.4964678287506104
30th percentile: 1.6186577796936035
40th percentile: 1.7423630714416505
50th percentile: 1.8660683631896973
60th percentile: 2.1382586479187013
70th percentile: 2.410448932647705
80th percentile: 2.557260513305664
90th percentile: 2.578693389892578
95th percentile: 2.589409828186035
99th percentile: 2.597982978820801
mean time: 1.9649324893951416
Pipeline stage StressChecker completed in 11.14s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.74s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 1.01s
Shutdown handler de-registered
albertwang8192-2025-07-10-0_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service albertwang8192-2025-07-10-0-v1-profiler
Waiting for inference service albertwang8192-2025-07-10-0-v1-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
clean up pipeline due to error=DeploymentChecksError('None: None')
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5082.46s
Shutdown handler de-registered
albertwang8192-2025-07-10-0_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-10-0_v1 status is now torndown due to DeploymentManager action