developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-09-0_v1
model_name: 2025-07-09_0
model_group: AlbertWang8192/2025-07-0
status: torndown
timestamp: 2025-07-10T01:04:29+00:00
num_battles: 6119
num_wins: 2773
celo_rating: 1254.93
family_friendly_score: 0.5988
family_friendly_standard_error: 0.006931645692041681
submission_type: basic
model_repo: AlbertWang8192/2025-07-09_0
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5914754897211045, 'latency_mean': 1.690568437576294, 'latency_p50': 1.6883875131607056, 'latency_p90': 1.8637988567352295}, {'batch_size': 3, 'throughput': 1.0672564878037754, 'latency_mean': 2.8029114711284637, 'latency_p50': 2.8215579986572266, 'latency_p90': 3.0924112796783447}, {'batch_size': 5, 'throughput': 1.2832901247403592, 'latency_mean': 3.876263475418091, 'latency_p50': 3.853959560394287, 'latency_p90': 4.2906070947647095}, {'batch_size': 6, 'throughput': 1.3438649722879017, 'latency_mean': 4.450346193313599, 'latency_p50': 4.449456214904785, 'latency_p90': 5.005270004272461}, {'batch_size': 8, 'throughput': 1.4010662206321174, 'latency_mean': 5.670160423517228, 'latency_p50': 5.68148946762085, 'latency_p90': 6.33589117527008}, {'batch_size': 10, 'throughput': 1.4327543503249007, 'latency_mean': 6.916656893491745, 'latency_p50': 6.961856126785278, 'latency_p90': 7.689252185821533}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-09_0
is_internal_developer: False
language_model: AlbertWang8192/2025-07-09_0
model_size: 13B
ranking_group: single
throughput_3p7s: 1.26
us_pacific_date: 2025-07-09
win_ratio: 0.4531786239581631
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_end|>', '<|im_start|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-09-0-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-09-0-v1-mkmlizer to finish
albertwang8192-2025-07-09-0-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ║ ║
albertwang8192-2025-07-09-0-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-09-0-v1-mkmlizer: Downloaded to shared memory in 106.543s
albertwang8192-2025-07-09-0-v1-mkmlizer: Checking if AlbertWang8192/2025-07-09_0 already exists in ChaiML
albertwang8192-2025-07-09-0-v1-mkmlizer: Creating repo ChaiML/2025-07-09_0 and uploading /tmp/tmphhqa_rj1 to it
albertwang8192-2025-07-09-0-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:04<00:20, 4.03s/it] 33%|███▎ | 2/6 [00:07<00:15, 3.94s/it] 50%|█████ | 3/6 [00:11<00:11, 3.85s/it] 67%|██████▋ | 4/6 [00:17<00:09, 4.79s/it] 83%|████████▎ | 5/6 [00:24<00:05, 5.52s/it] 100%|██████████| 6/6 [00:25<00:00, 4.04s/it] 100%|██████████| 6/6 [00:25<00:00, 4.31s/it]
albertwang8192-2025-07-09-0-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmphhqa_rj1, device:0
albertwang8192-2025-07-09-0-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-09-0-v1-mkmlizer: quantized model in 31.910s
albertwang8192-2025-07-09-0-v1-mkmlizer: Processed model AlbertWang8192/2025-07-09_0 in 190.497s
albertwang8192-2025-07-09-0-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-09-0-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-09-0-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-09-0-v1/nvidia
albertwang8192-2025-07-09-0-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-09-0-v1/nvidia/config.json
albertwang8192-2025-07-09-0-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-09-0-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-09-0-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-09-0-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-09-0-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-09-0-v1/nvidia/tokenizer.json
albertwang8192-2025-07-09-0-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-09-0-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-09-0-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.80it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 46.68it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:07, 43.91it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:07, 42.80it/s] Loading 0: 7%|▋ | 27/363 [00:00<00:07, 44.21it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:09, 35.45it/s] Loading 0: 11%|█ | 39/363 [00:00<00:07, 43.87it/s] Loading 0: 12%|█▏ | 44/363 [00:01<00:07, 43.21it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:07, 43.25it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:07, 41.01it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:07, 43.18it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 28.14it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 34.11it/s] Loading 0: 21%|██ | 76/363 [00:01<00:07, 36.03it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 37.12it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:07, 38.63it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:08, 32.86it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:06, 39.43it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:06, 39.40it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:06, 40.95it/s] Loading 0: 31%|███ | 113/363 [00:02<00:07, 33.60it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:07, 33.80it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 40.01it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 39.01it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 39.19it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 40.35it/s] Loading 0: 40%|███▉ | 145/363 [00:04<00:08, 24.81it/s] Loading 0: 41%|████ | 149/363 [00:04<00:08, 25.12it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:06, 31.84it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:06, 32.18it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 35.45it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 34.52it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:05, 36.73it/s] Loading 0: 49%|████▉ | 178/363 [00:04<00:05, 36.08it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 38.50it/s] Loading 0: 52%|█████▏ | 187/363 [00:05<00:04, 36.36it/s] Loading 0: 53%|█████▎ | 192/363 [00:05<00:04, 38.56it/s] Loading 0: 54%|█████▍ | 196/363 [00:05<00:04, 37.00it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 39.32it/s] Loading 0: 56%|█████▋ | 205/363 [00:05<00:04, 37.01it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 39.15it/s] Loading 0: 59%|█████▉ | 214/363 [00:05<00:03, 37.39it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:03, 36.82it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:05, 27.29it/s] Loading 0: 63%|██████▎ | 227/363 [00:06<00:04, 28.84it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 28.61it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 34.06it/s] Loading 0: 66%|██████▋ | 241/363 [00:06<00:03, 34.15it/s] Loading 0: 68%|██████▊ | 246/363 [00:06<00:03, 35.60it/s] Loading 0: 69%|██████▉ | 250/363 [00:06<00:03, 34.44it/s] Loading 0: 70%|███████ | 255/363 [00:07<00:02, 37.44it/s] Loading 0: 71%|███████▏ | 259/363 [00:07<00:02, 36.28it/s] Loading 0: 73%|███████▎ | 264/363 [00:07<00:02, 38.54it/s] Loading 0: 74%|███████▍ | 268/363 [00:07<00:02, 36.76it/s] Loading 0: 75%|███████▌ | 273/363 [00:07<00:02, 39.00it/s] Loading 0: 76%|███████▋ | 277/363 [00:07<00:02, 37.39it/s] Loading 0: 78%|███████▊ | 282/363 [00:07<00:02, 39.27it/s] Loading 0: 79%|███████▉ | 286/363 [00:07<00:02, 37.05it/s] Loading 0: 80%|████████ | 291/363 [00:08<00:01, 39.35it/s] Loading 0: 81%|████████▏ | 295/363 [00:08<00:01, 37.92it/s] Loading 0: 82%|████████▏ | 299/363 [00:08<00:01, 36.42it/s] Loading 0: 84%|████████▎ | 304/363 [00:08<00:02, 19.97it/s] Loading 0: 85%|████████▍ | 307/363 [00:08<00:02, 20.80it/s] Loading 0: 86%|████████▌ | 312/363 [00:09<00:02, 23.17it/s] Loading 0: 88%|████████▊ | 319/363 [00:09<00:01, 31.14it/s] Loading 0: 89%|████████▉ | 323/363 [00:09<00:01, 31.28it/s] Loading 0: 90%|█████████ | 328/363 [00:09<00:00, 35.33it/s] Loading 0: 92%|█████████▏| 333/363 [00:09<00:00, 36.56it/s] Loading 0: 93%|█████████▎| 338/363 [00:09<00:00, 38.28it/s] Loading 0: 94%|█████████▍| 343/363 [00:09<00:00, 40.28it/s] Loading 0: 96%|█████████▌| 348/363 [00:09<00:00, 34.04it/s] Loading 0: 98%|█████████▊| 355/363 [00:10<00:00, 40.67it/s] Loading 0: 99%|█████████▉| 360/363 [00:10<00:00, 40.76it/s]
Job albertwang8192-2025-07-09-0-v1-mkmlizer completed after 219.6s with status: succeeded
Stopping job with name albertwang8192-2025-07-09-0-v1-mkmlizer
Pipeline stage MKMLizer completed in 220.33s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-09-0-v1
Waiting for inference service albertwang8192-2025-07-09-0-v1 to be ready
Inference service albertwang8192-2025-07-09-0-v1 ready after 202.3498842716217s
Pipeline stage MKMLDeployer completed in 203.04s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.382411241531372s
Received healthy response to inference request in 1.5375289916992188s
Received healthy response to inference request in 1.762552261352539s
Received healthy response to inference request in 1.8504643440246582s
Received healthy response to inference request in 1.6927006244659424s
5 requests
0 failed requests
5th percentile: 1.5685633182525636
10th percentile: 1.5995976448059082
20th percentile: 1.6616662979125976
30th percentile: 1.7066709518432617
40th percentile: 1.7346116065979005
50th percentile: 1.762552261352539
60th percentile: 1.7977170944213867
70th percentile: 1.8328819274902344
80th percentile: 1.956853723526001
90th percentile: 2.1696324825286863
95th percentile: 2.276021862030029
99th percentile: 2.3611333656311033
mean time: 1.8451314926147462
Pipeline stage StressChecker completed in 10.76s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.77s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.74s
Shutdown handler de-registered
albertwang8192-2025-07-09-0_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3222.02s
Shutdown handler de-registered
albertwang8192-2025-07-09-0_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-09-0_v1 status is now torndown due to DeploymentManager action