developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-08-8_v1
model_name: 2025-07-08_8
model_group: AlbertWang8192/2025-07-0
status: torndown
timestamp: 2025-07-08T22:02:48+00:00
num_battles: 9275
num_wins: 4355
celo_rating: 1266.02
family_friendly_score: 0.6002000000000001
family_friendly_standard_error: 0.006927625278549642
submission_type: basic
model_repo: AlbertWang8192/2025-07-08_8
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5974259909418851, 'latency_mean': 1.6736742305755614, 'latency_p50': 1.6602953672409058, 'latency_p90': 1.8525293827056883}, {'batch_size': 3, 'throughput': 1.0791979629564155, 'latency_mean': 2.769855237007141, 'latency_p50': 2.7538859844207764, 'latency_p90': 3.0412923097610474}, {'batch_size': 5, 'throughput': 1.2950444181316914, 'latency_mean': 3.840187658071518, 'latency_p50': 3.8518049716949463, 'latency_p90': 4.249714517593384}, {'batch_size': 6, 'throughput': 1.3558605553040681, 'latency_mean': 4.40760223865509, 'latency_p50': 4.395978212356567, 'latency_p90': 4.907093715667725}, {'batch_size': 8, 'throughput': 1.4228405223495202, 'latency_mean': 5.570372602939606, 'latency_p50': 5.589436054229736, 'latency_p90': 6.305025815963745}, {'batch_size': 10, 'throughput': 1.463819962370862, 'latency_mean': 6.768447068929672, 'latency_p50': 6.735854148864746, 'latency_p90': 7.746569991111755}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-08_8
is_internal_developer: False
language_model: AlbertWang8192/2025-07-08_8
model_size: 13B
ranking_group: single
throughput_3p7s: 1.28
us_pacific_date: 2025-07-08
win_ratio: 0.46954177897574123
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-08-8-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-08-8-v1-mkmlizer to finish
albertwang8192-2025-07-08-8-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-8-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-08-8-v1-mkmlizer: Downloaded to shared memory in 47.046s
albertwang8192-2025-07-08-8-v1-mkmlizer: Checking if AlbertWang8192/2025-07-08_8 already exists in ChaiML
albertwang8192-2025-07-08-8-v1-mkmlizer: Creating repo ChaiML/2025-07-08_8 and uploading /tmp/tmp1tv1azf6 to it
albertwang8192-2025-07-08-8-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:06<00:33, 6.67s/it] 33%|███▎ | 2/6 [00:11<00:23, 5.77s/it] 50%|█████ | 3/6 [00:16<00:15, 5.17s/it] 67%|██████▋ | 4/6 [00:21<00:10, 5.19s/it] 83%|████████▎ | 5/6 [00:26<00:05, 5.27s/it] 100%|██████████| 6/6 [00:28<00:00, 3.90s/it] 100%|██████████| 6/6 [00:28<00:00, 4.69s/it]
albertwang8192-2025-07-08-8-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp1tv1azf6, device:0
albertwang8192-2025-07-08-8-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-08-8-v1-mkmlizer: quantized model in 31.939s
albertwang8192-2025-07-08-8-v1-mkmlizer: Processed model AlbertWang8192/2025-07-08_8 in 132.774s
albertwang8192-2025-07-08-8-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-08-8-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-08-8-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-08-8-v1/nvidia
albertwang8192-2025-07-08-8-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-8-v1/nvidia/config.json
albertwang8192-2025-07-08-8-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-8-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-08-8-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-8-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-08-8-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-8-v1/nvidia/tokenizer.json
albertwang8192-2025-07-08-8-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-08-8-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-08-8-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:12, 29.17it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:07, 47.26it/s] Loading 0: 5%|▍ | 18/363 [00:00<00:07, 46.82it/s] Loading 0: 6%|▋ | 23/363 [00:00<00:09, 35.81it/s] Loading 0: 8%|▊ | 30/363 [00:00<00:07, 44.63it/s] Loading 0: 10%|▉ | 36/363 [00:00<00:07, 46.24it/s] Loading 0: 12%|█▏ | 42/363 [00:01<00:08, 39.88it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:07, 44.22it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:07, 43.51it/s] Loading 0: 16%|█▌ | 58/363 [00:01<00:06, 44.97it/s] Loading 0: 17%|█▋ | 63/363 [00:01<00:10, 29.36it/s] Loading 0: 18%|█▊ | 67/363 [00:01<00:09, 30.99it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:08, 34.08it/s] Loading 0: 21%|██ | 76/363 [00:01<00:08, 34.84it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 36.87it/s] Loading 0: 23%|██▎ | 85/363 [00:02<00:07, 36.72it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:07, 38.14it/s] Loading 0: 26%|██▌ | 95/363 [00:02<00:06, 40.74it/s] Loading 0: 28%|██▊ | 100/363 [00:02<00:07, 33.63it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:06, 38.82it/s] Loading 0: 31%|███ | 112/363 [00:02<00:05, 42.67it/s] Loading 0: 32%|███▏ | 117/363 [00:03<00:06, 40.68it/s] Loading 0: 34%|███▍ | 123/363 [00:03<00:05, 40.19it/s] Loading 0: 35%|███▌ | 128/363 [00:03<00:05, 39.67it/s] Loading 0: 37%|███▋ | 134/363 [00:03<00:05, 43.97it/s] Loading 0: 38%|███▊ | 139/363 [00:03<00:05, 43.49it/s] Loading 0: 40%|███▉ | 144/363 [00:03<00:07, 27.73it/s] Loading 0: 41%|████ | 149/363 [00:04<00:07, 29.44it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:05, 36.37it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 36.48it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 38.20it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 38.38it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 37.43it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 40.79it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 39.58it/s] Loading 0: 53%|█████▎ | 193/363 [00:05<00:04, 40.18it/s] Loading 0: 55%|█████▍ | 199/363 [00:05<00:04, 39.58it/s] Loading 0: 56%|█████▌ | 204/363 [00:05<00:04, 38.20it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 42.92it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 43.13it/s] Loading 0: 61%|██████ | 220/363 [00:05<00:03, 44.85it/s] Loading 0: 62%|██████▏ | 225/363 [00:06<00:05, 27.56it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:04, 29.62it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 37.07it/s] Loading 0: 67%|██████▋ | 242/363 [00:06<00:03, 38.24it/s] Loading 0: 68%|██████▊ | 247/363 [00:06<00:02, 39.58it/s] Loading 0: 69%|██████▉ | 252/363 [00:06<00:02, 42.08it/s] Loading 0: 71%|███████ | 257/363 [00:06<00:02, 35.79it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 42.77it/s] Loading 0: 74%|███████▍ | 269/363 [00:07<00:02, 42.85it/s] Loading 0: 75%|███████▌ | 274/363 [00:07<00:02, 43.37it/s] Loading 0: 77%|███████▋ | 280/363 [00:07<00:01, 42.00it/s] Loading 0: 79%|███████▊ | 285/363 [00:07<00:01, 40.50it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 44.21it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 42.32it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 42.80it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 22.06it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 23.10it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 25.05it/s] Loading 0: 88%|████████▊ | 319/363 [00:08<00:01, 29.74it/s] Loading 0: 89%|████████▉ | 323/363 [00:08<00:01, 31.31it/s] Loading 0: 91%|█████████ | 329/363 [00:08<00:00, 36.13it/s] Loading 0: 92%|█████████▏| 334/363 [00:08<00:00, 38.20it/s] Loading 0: 93%|█████████▎| 339/363 [00:09<00:00, 32.81it/s] Loading 0: 95%|█████████▌| 346/363 [00:09<00:00, 40.17it/s] Loading 0: 97%|█████████▋| 351/363 [00:09<00:00, 40.42it/s] Loading 0: 98%|█████████▊| 356/363 [00:09<00:00, 39.97it/s] Loading 0: 99%|█████████▉| 361/363 [00:09<00:00, 41.85it/s]
Job albertwang8192-2025-07-08-8-v1-mkmlizer completed after 157.86s with status: succeeded
Stopping job with name albertwang8192-2025-07-08-8-v1-mkmlizer
Pipeline stage MKMLizer completed in 158.43s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-08-8-v1
Waiting for inference service albertwang8192-2025-07-08-8-v1 to be ready
Inference service albertwang8192-2025-07-08-8-v1 ready after 190.93970823287964s
Pipeline stage MKMLDeployer completed in 191.47s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.349372148513794s
Received healthy response to inference request in 1.7239115238189697s
Received healthy response to inference request in 1.8106582164764404s
Received healthy response to inference request in 1.6095755100250244s
Received healthy response to inference request in 1.8413589000701904s
5 requests
0 failed requests
5th percentile: 1.6324427127838135
10th percentile: 1.6553099155426025
20th percentile: 1.7010443210601807
30th percentile: 1.741260862350464
40th percentile: 1.7759595394134522
50th percentile: 1.8106582164764404
60th percentile: 1.8229384899139405
70th percentile: 1.8352187633514405
80th percentile: 1.9429615497589112
90th percentile: 2.1461668491363524
95th percentile: 2.247769498825073
99th percentile: 2.3290516185760497
mean time: 1.8669752597808837
Pipeline stage StressChecker completed in 10.58s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.64s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.69s
Shutdown handler de-registered
albertwang8192-2025-07-08-8_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 5245.61s
Shutdown handler de-registered
albertwang8192-2025-07-08-8_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-08-8_v1 status is now torndown due to DeploymentManager action